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Tree-ring data have been used to augment limited instrumental records of climate and provide a longer
view of past variability, thus improving assessments of future scenarios. For streamflow reconstructions,
traditional regression-based approaches cannot examine factors that may alter streamflow indepen-
dently of climate, such as changes in land use or land cover. In this study, seasonal water balance models
were used as a mechanistic approach to reconstruct streamflow with proxy inputs of precipitation and air
temperature. We examined a Thornthwaite water balance model modified to have seasonal components
and a simple water balance model with a snow component. These two models were calibrated with a
shuffled complex evolution approach using PRISM and proxy seasonal temperature and precipitation
to reconstruct streamflow for the upper reaches of the West Walker River basin at Coleville, CA. Overall,
the modified Thornthwaite model performed best during calibration, with R2 values of 0.96 and 0.80
using PRISM and proxy inputs, respectively. The modified Thornthwaite model was then used to recon-
struct streamflow during AD 1500–1980 for the West Walker River basin. The reconstruction included
similar wet and dry episodes as other regression-based records for the Great Basin, and provided
estimates of actual evapotranspiration and of April 1 snow water equivalence. Given its limited input
requirements, this approach is suitable in areas where sparse instrumental data are available to improve
proxy-based streamflow reconstructions and to explore non-climatic reasons for streamflow variability
during the reconstruction period.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Long-term records of water resources are important for sustain-
able water management, especially in the Western United States
where population growth is high and climate in many regions is
semi-arid with frequent drought and low rainfall (Anderson and
Woosley, 2005). In addition, limited water supplies in the Western
United States are anticipated to further decrease due to increased
demand and predicted climate change (Cayan et al., 2010; Milly
et al., 2005; Seager et al., 2007). Instrumental records of
precipitation, temperature, and surface-water flow in this part of
the world are usually limited to the last century, but long-term
estimates of streamflow variability are critical for managing the
impacts of floods and droughts (Stewart et al., 2004; Wilhite,
2000). Among proxies used for extending climate records and pro-
viding a paleo-perspective on recent changes, tree-ring records,
having annual to seasonal resolution, allow for numerical calibra-
tion with instrumental records (Cook and Kairiukstis, 1990;
Fritts, 1976).

Dendroclimatic studies have generated multi-century long ser-
ies of temperature, precipitation, streamflow, and drought all over
the world (Frank et al., 2005; Tingley and Huybers, 2010), includ-
ing the Western United States (Meko and Graybill, 1995;
Woodhouse and Lukas, 2006). These reconstructions are usually
based on linear regression techniques, but when applied to stream-
flow, such empirical approaches cannot directly test the influence
of watershed factors such as changes in land use or soil type that
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can alter streamflow independently of climate. A mechanistic
approach could therefore be useful in these cases because
non-climatic factors could be inserted in model runs to test the
sensitivity of the reconstructed streamflow and obtain more
realistic uncertainty estimates (Saito et al., 2008).

Mechanistic watershed models are fundamental to water
resources assessment, development, and management (Singh and
Woolhiser, 2002). These models have been used to analyze the
quantity and quality of streamflow, reservoir system operations,
surface water and groundwater conjunctive use, and a range of
other water management activities (Wurbs, 1998; Xu, 2002). Most
watershed models generally require detailed hydrological and
meteorological inputs. Data requirements often include minimum
and maximum air temperatures, short-wave radiation (especially
for snowmelt calculations), pan evaporation, precipitation, dew-
point temperature, relative humidity, wind speed, and watershed
data such as topography, soils, and vegetation features (Singh
and Woolhiser, 2002). Most of these data are not available when
streamflow is reconstructed using tree-ring records over several
centuries, which is one reason why regression-based approaches
have been preferred.

Among mechanistic watershed modeling approaches, a water
balance model can be considered as a system of equations
designed to represent components of the hydrologic cycle. Water
balance models were first developed in the 1960s, and have been
used over time for various water management issues (Alley,
1984; Xu, 2002). For instance, these models have been applied
for determining seasonal patterns of irrigation demand, soil mois-
ture stress, and prediction of streamflow. Water balance models
keep track of water input and output by accounting for precipita-
tion and snowmelt, evapotranspiration, streamflow, runoff, and
groundwater (Alley, 1984), and can range from quite simple to very
complex, depending on study objectives.

Some recent studies have examined the use of water balance
models with proxy data to model hydrologic processes for surface
runoff, evapotranspiration (ET), groundwater flow, base flow, and
snowmelt using as input either precipitation alone (Saito et al.,
2008) or both precipitation and temperature (Gray and McCabe,
2010; Solander et al., 2010). Saito et al. (2008) used a water balance
model adapted from Fiering (1967), Salas and Obeysekera (1992),
and Vogel and Sankarasubramanian (2003) to simulate stream-
flows in the upper West Walker River watershed in California on
a water year (WY; October 1 through September 30) timescale.
Total WY precipitation obtained from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM; Daly et al.,
1994) was the only input, and the model represented observed
streamflow quite well (R2 = 0.87, n = 63 years). Since this model
did not include a snow component, it only had four parameters.
Solander et al. (2010) modified the model used by Saito et al.
(2008) to operate on a seasonal timescale, and used a tempera-
ture-index approach for addressing snowfall and snowmelt.
PRISM-derived cold season precipitation and air temperature were
used as input, and the model was calibrated to the upper Meadow
Valley Wash watershed in southeastern Nevada (R2 = 0.81;
n = 18 years). However, this particular basin had the added compli-
cations of a downstream dam and upstream diversions for seasonal
irrigation, which both influence streamflow during part of the year.
Thus, this model was only used for the cold season, the part of the
year with natural flow regimes because diversions were not
supposed to occur.

Gray and McCabe (2010) utilized the monthly Thornthwaite
water balance model (McCabe and Markstrom, 2007) to generate
annual streamflows for the Upper Yellowstone drainage and
simulate impacts of future climate scenarios on regional hydrol-
ogy. Model calibration resulted in a correlation coefficient of 0.71
for the period 1911–1995 using PRISM precipitation and air
temperature data as input. Proxy precipitation data were then
obtained at annual resolution by calibrating tree-ring chronologies
against PRISM precipitation between 1895 and 2004. When PRISM
temperature and proxy precipitation were used as input, model
calibration resulted in a correlation coefficient of 0.56.

Because proxy records of precipitation and temperature are
available at annual and seasonal time scales at best (Bradley,
1999), our objective was to improve upon a seasonal water balance
model that could use proxy precipitation and temperature as input
to estimate past streamflow over long time periods. We focused on
snowpack dynamics because in mountainous regions, snowfall sig-
nificantly affects watershed hydrology by storing water in the form
of snow and releasing it either in part or in full as snowmelt in the
spring, depending on climatic conditions (Pavelsky et al., 2011;
Stewart, 2009). In the Western United States, approximately 50–
80% of the total annual water budget comes from snowmelt
(Hanson, 2001; Serreze et al., 2001; Williams and Tarboton, 1999).

Our models were applied to the upper West Walker River Basin,
where water issues have generated heated debate in recent times
(Remick, 2003) and millennia-long tree-ring records are available
(Biondi et al., 2008). The main challenge was to obtain reasonable
streamflow estimates while using a minimal number of model
parameters, and still allowing for the inclusion of non-climatic fac-
tors in model simulations to better constrain the uncertainty of the
reconstructed streamflow. Models were calibrated against stream
gauge data for the West Walker River basin at the United States
Geological Survey (USGS) station of Coleville, California to deter-
mine the most appropriate approach for reconstructing streamflow
with seasonal proxy inputs.

2. Materials and methods

2.1. Site description

The upper West Walker River watershed upstream of the
Coleville station has an area of 490 km2 and is located near the
boundary between California and Nevada (Fig. 1). Streamflow gauge
data (USGS gauge 10296000, 38.38�N, 119.45�W, elevation 2009 m;
http://waterdata.usgs.gov/nwis/nwisman/?site_no=10296000&
agency_cd=USGS) are available since 1938. The West Walker River
originates in the Eastern Sierra Nevada and flows north–northeast
before converging with the East Walker River in Mason Valley just
south of Yerington, Nevada. Upon exiting Mason Valley, the river
turns southward before terminating in Walker Lake, a remnant of
prehistoric Lake Lahontan that encompassed most of the Great
Basin during the last ice age (Horton, 1996). The watershed eleva-
tion ranges from about 2000 m to more than 3700 m. Snow water
equivalent (SWE) data were available from five sites: Leavitt Mead-
ows, Sonora Pass, Virginia Lakes, Virginia Lakes Ridge, and Willow
Flat (California Data Exchange; http://cdec.water.ca.gov/cgi-progs/
snowQuery).

There is no meteorological station in the upper West Walker
River watershed and the nearest one is in Bridgeport, CA
(38.25�N, 119.23�W, elevation 1972 m; Fig. 1). Data from this
meteorological station go back to 1948 and show an average calen-
dar year precipitation of about 230 mm. Average calendar year
snowfall from the nearest SNOTEL site in the upper West Walker
River watershed (Sonora Pass, 38.32�N, 119.6�W, elevation
2682 m; in operation since 1984) is approximately 1100 mm. From
January 1895 to December 2001, average annual WY precipitation
in 12 PRISM cells that cover the watershed is about 1200 mm, and
average monthly PRISM temperatures range from �10 �C in
February to 23 �C in July.

The geology of the Walker River Basin centers around the mod-
ern Sierra Nevada batholiths, which formed around 225 to 65 mil-
lion years ago (Hill, 1975). Natural processes eroded the overlying
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Fig. 1. Left: Map of the upper West Walker River watershed, including the USGS streamflow station at Coleville (solid circle), streams (lines), watershed boundary (heavy
black line), SNOTEL site (square), and Bridgeport meteorological station (triangle). Right: Watershed location in the Western United States.
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external rock, exposing the batholiths in the region as an area of
low, gently rolling granitic hills. Around 20 million years ago volca-
nic eruptions blanketed the area with lava flows and volcanic
material (Reed, 1933). As eruptions increased in frequency, the
eastern edge of the modern Sierra Nevada mountain range began
to rise and tilt along fault lines. These processes of uplift and ero-
sion continue to shape and wear down the Sierra Nevada mountain
range (Hill, 1975). The eastern side of the range is considerably
more tilted and is less weathered due in part to the rain shadow
on this side of the range (Reed, 1933). Human settlement within
the watershed is minimal and has not changed much over the per-
iod of instrumental streamflow records. Lightning-caused wildfires
are a natural occurrence in this landscape, and 14 wildfires were
documented in the upper West Walker River Basin between WY
1961 and 2006 (Vittori, 2011). All wildfires occurred during the
dry season, with seven fires recorded in 1991 at various locations
in the watershed.

The vegetation in the watershed is directly related to elevation
and orographic precipitation, both of which decline from west to
east. Higher elevations have mixed conifer stands, with western
white pine (Pinus monticola), red fir (Abies magnifica), Jeffrey pine
(Pinus jeffreyi) at the uppermost elevations, and white fir (Abies
concolor) and western juniper (Juniperus occidentalis) at mid-eleva-
tions (Kattelmann, 2012). Brushfields also are present at higher
elevations with buckbrush (Ceonothus velutinus) and chokecherry
(Prunus emarinatus), whereas at lower elevations sage (Artemesia
tridentata), bitterbrush (Purshia tridentata), mountain mahogany
(Cercocarpus ledifolius), and snowberry (Symphoricarpos albus)
dominate brush communities (Kattelmann, 2012).
2.2. Model approaches

2.2.1. Thornthwaite seasonal model (Model A)
The Thornthwaite seasonal model (Fig. 2a) is a modification of

the Thornthwaite monthly water balance model that allocates
water among various components of the hydrologic system
(McCabe and Wolock, 1999; McCabe and Markstrom, 2007;
Thornthwaite, 1948). Inputs to the model are seasonal temperature
(T, �C), seasonal total precipitation (P, mm), and latitude (�) of the
location used for computing day length and then potential evapo-
transpiration (PET). The Thornthwaite model’s monthly day length
factor was converted to a seasonal day length by averaging the
monthly day length factors for each season (October to March for
cold season, and April to September for warm season) and dividing
the average value by the number of days in each season (182 and
183 for the cold and warm seasons, respectively).

The model estimates the amount of seasonal precipitation
(Ptotal) that is rain (Prain) or snow (Psnow) in mm for each timestep.
When seasonal temperature (T) is below a specified threshold
(Tsnow, �C), all precipitation is considered to be snow. If temperature
is greater than an additional threshold (Train, �C), then all precipita-
tion is considered to be rain. When the seasonal air temperature is
between Tsnow and Train, the amount of precipitation that is snow
decreases linearly from 100% to 0% of the total precipitation
according to Eq. (1):

Psnow ¼ Ptotal �
Train � T

Train � Tsnow

� �
ð1Þ

Prain is then computed as:

Prain ¼ Ptotal � Psnow ð2Þ

Direct runoff (DRO, mm) is runoff from impervious surfaces, or
runoff resulting from infiltration excess overflow. DRO is calculated
as:

DRO ¼ Prain � drofrac ð3Þ

where drofrac is a direct runoff coefficient that represents the frac-
tion of Prain that becomes runoff. DRO is subtracted from Prain to
compute the amount of remaining precipitation (Premain):

Premain ¼ Prain � DRO ð4Þ

Snow storage (snoster, mm) is subjected to melt if conditions
are such that melting can occur. Thus, snow, rain and snowmelt
can occur in the same season. The fraction of snoster that melts
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Fig. 2. Schematics of (a) the modified Thornthwaite seasonal model (Model A) and (b) the simple water balance model with WASMOD snow component (Model B).
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in a season (snowmelt fraction, SMF) is computed from seasonal
average temperature (T) and a maximum melt rate (meltmax).
Maximum melt rate (meltmax) is one of the calibrated parameters
(McCabe and Wolock, 1999). The fraction of snow storage that
melts (SMF) in a season is computed as:

SMF ¼ T � Tsnow

Train � Tsnow

� �
�meltmax ð5Þ

If the computed SMF is greater than meltmax, then SMF is set to
meltmax. The amount of snow that is melted in a season (SM) in
mm of snow water equivalent is computed as:

SM ¼ snoster � SMF ð6Þ

SM is added to Premain to compute the total liquid water input
(Pliquid) to the soil. Additional equations for the model are included
in Appendix A. Calibration parameters for the modified Thornthwa-
ite model are Train, Tsnow, drofrac, meltmax, rfactor, STC, GS, and SW,
where STC is the soil moisture storage capacity (cm), GS is initial
groundwater storage (cm), and SW is initial surface water (cm).

2.2.1. Simple water balance model with WASMOD (Model B)
The simple water balance model was modified from that used

by Saito et al. (2008), which required an initial boundary condition
of starting groundwater storage (GS) plus four water balance
parameters that did not change with time. These parameters were
a = fraction of snowmelt and rain that becomes surface runoff;
b = fraction of infiltrated water that evapotranspires; c = fraction
of groundwater storage that becomes base flow; and d = fraction
of groundwater storage that becomes groundwater flow. To con-
vert this annual model to a seasonal one, it was necessary to add
a snow component that was derived from the Water and Snow bal-
ance MODeling system (WASMOD; Fig. 2b; Xu, 2002). To determine
the amount of snow that melts, two threshold temperature param-
eters, a1 (�C) and a2 (�C), were used, with a1 P a2. Snowmelt begins
when air temperature is higher than a2; snowfall starts to become
rainfall when air temperature is higher than a1. These threshold
temperatures were calibration parameters and their acceptable
ranges were 0–3.89 �C for a1 and 0�a1 �C for a2 (Xu, 2002).

The snow calculation procedure in WASMOD begins by calcu-
lating the average seasonal snowfall component Snt (cm) of precip-
itation Pt (cm) as a fraction of seasonal Pt that depends on the
average seasonal temperature T (�C):

Snt ¼ Pt 1� e
ðT�a1 Þ
ða1�a2 Þ

h i22
4

3
5 ð7Þ

Seasonal rainfall, Rt (cm), is therefore:

Rt ¼ Pt � Snt ð8Þ



Table 1
Boundary values and constraints for Model A (modified Thornthwaite model) and
Model B (simple water balance model with WASMOD snow component).

Parameter (units) Model A Model B
Train (°C) 0 – 5
Tsnow (°C) -1 - (-10)
drofrac 0.1 - 1
meltmax 0.01 - 1
STC (cm) 100 - 250
rfactor 0 – 1
a1(°C) 0 - 3.89
a2(°C) 0 - a1
a 0 - 0.9
b 0 - 1
c 0 - 1
d 0 - 1
Initial groundwater storage (GS) (cm) 0 - 200 0 - 200
c + d ≤ 1
Initial surface water (cm) 0 - 100

Shading indicates parameters not used in a particular model.
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Snowmelt during each season t is calculated as a function of the
average seasonal temperature T, and snowpack Spt�1 at the begin-
ning of season t as:

Mt ¼ Spt�1 1� e
ðT�a2Þ
ða1�a2 Þ

h i22
4

3
5 ð9Þ

The snowpack balance equation is:

Spt ¼ Spt�1 þ Snt �Mt ð10Þ

The remaining snowpack Spt is added to the snowfall for the
next season. The simple water balance model with WASMOD snow
component has seven calibration parameters: a1, a2, a, b, c, d, and
GS. Additional equations for the model are included in Appendix A.

2.2.3. Model inputs and setup
For Model A, upper and lower bounds of parameter values were

selected according to available literature for the Thornthwaite
model (Table 1; Gray and McCabe, 2010; McCabe and
Markstrom, 2007; Rango and Martinec, 1995; Thornthwaite and
Mather, 1955; Wolock and McCabe, 1999). Parameter a of Model
B represents the fraction of snowmelt and precipitation that
becomes runoff, and theoretically the upper bound for the param-
eter is equal to one. Because the dominant soil group in the region
is Hydrologic Soil Group D (Natural Resources Conservation
Service, 2009), which has a very slow rate of water transmission,
parameter a is expected to be high so its upper bound was set at
0.9. The upper boundaries for b, c, and d for Model B were set to
1.0 because ET, base flow, and groundwater (GW) flow could not
exceed available infiltrated water or GW storage (Saito et al.,
2008). Lower boundary conditions for a, b, c, and d were set to
0.0. The upper boundary of the sum of parameters c and d was
fixed at 1 so that the base flow and GW flow could not exceed
the available groundwater storage.

2.2.3.1. Input data. The seasonal water balance models used sea-
sonal temperature and precipitation calculated from monthly
PRISM precipitation and maximum and minimum temperature at
2.5 arc-minute resolution. PRISM grid cells included in the
watershed area provided data for WY 1940–2011. Seasons were
defined as cold–wet (October to March) and warm–dry (April to
September) based on precipitation data, with cold–wet precipita-
tion accounting for about 80% of the total WY precipitation on
average. Monthly maximum and minimum PRISM air tempera-
tures were averaged over each season to get maximum and mini-
mum seasonal temperatures. In addition, monthly maximum and
minimum temperatures were averaged to get monthly average
temperatures which were then averaged by season to get average
seasonal temperatures.

In the modified Thornthwaite model (Model A), data for the
average mean seasonal temperature (T) in Eq. (1) were the average
maximum seasonal temperature (Tmax; Model A-1), the
average minimum seasonal temperature (Tmin; Model A-2), or the
average mean seasonal temperature (Tavg; Model A-3). For the sim-
ple water balance model with WASMOD snow component (Model
B), data for the average seasonal temperature (T) in Eqs. (7) and (9)
were the average maximum seasonal temperature (Tmax; Model B-
1), average minimum seasonal temperature (Tmin; Model B-2), or
the average mean seasonal temperature (Tavg; Model B-3).

WY proxy precipitation in cm (Fig. 3a) was calculated by
regressing PRISM precipitation for WY 1896–2001 against precipi-
tation values in standard deviation units (SDUs) from Biondi et al.
(2008). Mean WY proxy temperature in �C (Fig. 3b) was calculated
by regressing PRISM temperature for WY 1896–1980 against tem-
perature anomalies from Wahl and Smerdon (2012) for their grid
cell (37.5�N, 117.5�W) nearest to the West Walker River at
Coleville, CA. The temperature and precipitation regressions
between PRISM and proxy records resulted in R2 values of 0.27
and 0.35, respectively.

Precipitation and temperature records derived from tree rings
were on an annual scale, hence disaggregation into a seasonal time
scale was necessary for use in our seasonal water balance models.
Using historical (WY 1940–2011) PRISM data, we found that the
ratio of warm–dry season to WY precipitation decreases as WY
precipitation increases. Thus, annual values of proxy precipitation
from WY 1500 to 1980 AD were divided into quartiles, and modern
ratios (Table 2) were used to disaggregate proxy WY precipitation
into warm season precipitation (Gray and McCabe, 2010). Cold–
wet season precipitation values were calculated by subtracting
the warm–dry season precipitation from the WY value each year.
Linear regression coefficients estimated between PRISM average
WY temperatures and PRISM warm–dry (R2 = 0.42) or cold–wet
(R2 = 0.47) seasonal temperatures for WY 1896–1980 were used
to estimate warm–dry and cold–wet season temperatures from
the proxy annual temperatures for WY 1500 to 1980.
2.2.4. Model calibration, validation, and verification
The models were tested to determine appropriate parameters to

use for proxy reconstructions by applying the shuffled complex
evolution (SCE) method, which is a global optimization strategy
designed and developed by Duan et al. (1992). Various researchers
have investigated the use of the SCE method for calibration of
hydrological and water balance, soil erosion, subsurface hydrology,
remote sensing, and land surface models and have found it to be
efficient, robust, and consistent in comparison to other optimiza-
tion strategies (Eckhardt et al., 2005; Gupta et al., 1999; Thyer
et al., 1999; Vanhaute et al., 2012; Xiao et al., 2009).

The SCE algorithm in the first step (zero-loop) generates a ‘‘pop-
ulation’’ of points by random sampling throughout the feasible
parameter space for the parameters to be optimized. A criterion
value (objective function) is calculated for each parameter set
and the sets are ranked in order of increasing criterion value. The
population is then partitioned into a number of ‘‘complexes,’’ each
consisting of 2n + 1 parameter sets, where n is the number of
parameters to be optimized. Each complex then evolves indepen-
dently following a Competitive Complex Evolution (CCE) algorithm
which is based on a simplex downhill search scheme (Nelder and
Mead, 1965). The parameter sets in the evolved complexes are next
combined into a single sample population and ranking is done
based on the criterion value. The entire population is then shuffled
or re-partitioned by re-assigning the parameter sets into new



Fig. 3. Linear regressions of (a) water year (WY) 1896–2001 PRISM precipitation against tree-ring reconstructed precipitation (standard deviation units, SDU) from Biondi
et al. (2008); and (b) PRISM temperature for WY 1896–1980 against tree-ring reconstructed temperature anomalies from Wahl and Smerdon (2012).

Table 2
Ratio of PRISM warm–dry season precipitation to PRISM WY precipitation according
to precipitation quartiles for WY 1940–2011.

Quartile Ratio

1st 0.271
2nd 0.211
3rd 0.185
4th 0.180
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complexes formed so that information gained by the previous
complexes is shared. The evolution and shuffling steps continue
until pre-specified convergence criteria are reached.

The combination of deterministic and probabilistic approaches
requires some algorithmic parameters that control these compo-
nents. They are m, the number of points in a complex; q, the num-
ber of points in a subcomplex; p, the number of complexes; pmin,
the minimum number of complexes required in the population; a,
the number of consecutive offspring generated by each sub-com-
plex; and b, the number of evolution steps taken by each complex.
Duan et al. (1994) and Sorooshian et al. (1993) recommended some
default values and equations to compute these parameters:
m = 2n + 1; q = n + 1; a = 1; b = m; and p = 20.

The SCE method was used to calibrate the water balance models
with PRISM precipitation and temperature inputs. These models
used default parameter values for the SCE algorithms. Model cali-
bration and validation with PRISM inputs followed the classical
split-sample test as defined by Klemes (1986). The entire record
(WY 1940–2011) was divided into two time periods: WY 1940–
1978 and WY 1979–2011. The first time period was used for cali-
bration and the second for validation, and then the second time
period was used for calibration and the first for validation. Param-
eter estimates obtained in the calibration period were used in the
validation run. SCE terminated when the objective function was
reduced by one percent or less over five successive iterations (i.e.
evolution loops), or if a maximum of 50,000 model runs had been
carried out.

The Thornthwaite seasonal water balance model (Model A) and
the simple water balance model with WASMOD snow component
(Model B) were programmed in MATLAB and the SCE algorithm
was implemented to calibrate eight parameters for Model A and
seven parameters for Model B using upper and lower bounds of
these parameters in Table 1.The objective function was to mini-
mize the root mean-squared error (RMSE) between actual stream-
flow recorded at the USGS streamflow gage in Coleville, CA (i.e.,
mean daily streamflow for each seasonal period) and simulated
streamflow (Eq. (11)):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

t¼1
ðQ sim

t � Qobs
t Þ

2
r

ð11Þ

where n is the number of observations (in this case the total num-
ber of seasons), and Qt

sim and Qt
obs are respectively defined as the

simulated and observed streamflow values (in cm per season) at
timestep t. In addition to RMSE, R2, percent bias, relative RMSE
(RRMSE; Eq. (12)), and Nash Sutcliffe Efficiency (NSE; Eq. (13)) were
calculated to evaluate model performance:
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RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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t � Q obs

t Þ
Q obs

t

 !2
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sim
t � Q obs

t Þ
2

Pn
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obs
t � �Q obs

t Þ
2 ð13Þ

where �Qobs is defined as the average of observed streamflow. These
model performance measures were also calculated for each season
(warm–dry and cold–wet), and all metrics were evaluated to select
the best model.

SCE was also used to calibrate Model A and Model B with proxy
seasonal input data for WY 1940–1980. Because the period of over-
lap between proxy data and instrumental streamflows was so lim-
ited, only calibration was performed (i.e., no validation, reverse
calibration or reverse validation).

2.2.5. Sensitivity analysis and streamflow reconstruction
Because one of the values of the new approach could be the

ability to simulate ‘‘what if’’ scenarios regarding changes in the
watershed, sensitivity analysis of model parameters was per-
formed to provide insight into the robustness of parameter values
and their uncertainties by demonstrating the influence of the val-
ues of a parameter on simulation results (Bardossy and Singh,
2008). Parameters that have larger influences on simulated results
with small changes in their values are more sensitive than those
have little influence when changed (Brath et al., 2004; Sieber and
Uhlenbrook, 2005).

We tested the sensitivity of model parameters by changing their
values in 10% increments within their feasible ranges while keep-
ing other parameters constant at the SCE calibrated values with
PRISM inputs. The resulting RMSEs were calculated to identify
parameters with large influences on simulated results (Brath
et al., 2004; Sieber and Uhlenbrook, 2005).

Finally, we used the calibrated parameters for the best perform-
ing model to reconstruct streamflows with proxy precipitation and
temperature for the period 1500–1980. The resulting time series of
streamflows was evaluated using the methods of Biondi et al.
(2008) to quantify and rank positive and negative episodes.
Table 3
Performance metrics of all models from the Shuffled Complex Evolution (SCE) approach for
best-performing models for validation (val; WY 1979–2011), reverse calibration (rev. cal.;
data.

Performance 
metrics (units)

Model A
A-1 cal. A-2 cal. A-3 cal. A-2 

val.
A-2 
rev. 
cal.

R2 overall 0.00 0.96 0.94 0.83 0.89
R2 warm 0.08 0.88 0.87 0.65 0.75
R2 cold 0.00 0.44 0.43 0.15 0.18
RMSE overall (cm) 27.82 4.57 9.34 10.81 8.70
RMSE warm (cm) 38.47 5.66 11.22 14.06 11.55
RMSE cold (cm) 5.49 2.98 6.75 5.99 4.23
% Bias overall -71.76 -3.73 -32.12 3.40 -3.55
% Bias warm -87.54 -1.74 -23.44 -5.11 -2.23
% Bias cold 6.88 -16.41 -90.76 -7.08 11.71
NSE overall -0.70 0.95 0.81 0.82 0.89
NSE warm -4.48 0.88 0.53 0.61 0.74
NSE cold -1.36 0.31 -2.55 -0.93 0.04
RRMSE overall 0.82 0.29 0.72 0.49 0.39
RRMSE warm 0.83 0.19 0.31 0.32 0.28
RRMSE cold 0.80 0.36 0.96 0.62 0.47

Bold values indicate the best calibration values for each model, italics indicates the over
model for validation performance metrics, and gray shading indicates best performing m
3. Results

Calibration results using SCE with PRISM inputs (Table 3)
showed that the Thornthwaite seasonal water balance model with
average minimum temperatures (Model A-2) and the simple water
balance model with WASMOD snow component and average sea-
sonal temperatures (Model B-3) performed better than other ver-
sions of the same models. Similar results were obtained for the
validation, reverse calibration, and reverse validation runs using
SCE with PRISM inputs (Table 3). The best overall calibration per-
formance metrics (i.e., metrics for results for both seasons
together) were found for the Thornthwaite seasonal model with
minimum average seasonal temperatures (Model A-2) and
included an overall R2 of 0.96, RMSE of 4.57 cm, Bias of �3.73%,
NSE of 0.95, and RRMSE of 0.29, indicating that model simulations
compared well with observed values (Fig. 4a). However, model
performance worsened during the reverse calibration period
(Table 3). The simple water balance model (Model B-3) performed
well with observed values during the calibration and reverse cali-
bration runs, with R2 of 0.94 (Table 3; Fig. 4b). Validation and
reverse validation statistics indicated that Model B-3 performed
better outside of the calibration period compared to Model A-2
(Table 3). Most performance metrics for all models were worse
during the cold–wet season compared to the warm–dry season.
For example, R2 values were 0.75–0.90 in the warm–dry season,
and 0.18–0.52 in the cold–wet one for calibration and reverse
calibration.

SCE calibrations for Model A and Model B using the tree-ring
derived cold–wet and warm–dry seasonal precipitation and tem-
perature for WY 1940–1980 (Table 4) indicated the modified
Thornthwaite model (Model A) performed better than Model B.
The best calibration performance metrics for this model were an
overall R2 of 0.80, RMSE of 10.71 cm, bias of �19.33%, NSE of
0.75, and RRMSE of 0.65. Cold–wet seasonal performance metrics
were usually better than warm–dry seasonal metrics, which was
also the case in the SCE calibration using PRISM inputs. Overall
model performance worsened using tree-ring derived precipitation
and temperature as compared to PRISM data, but remained better
than for the Gray and McCabe (2010) watershed model with tree-
ring inputs.
calibration period (cal.; WY 1940–1978). Also shown are performance metrics of the
WY 1979–2011) and reverse validation (rev. val.; WY 1940–1978) with PRISM input

Model B
A-2 
rev. 
val.

B-1 cal. B-2 cal. B-3 cal. B-3 
val.

B-3 
rev. 
cal.

B-3 
rev. 
val.

0.93 0.91 0.91 0.94 0.88 0.91 0.93
0.84 0.80 0.82 0.90 0.76 0.81 0.87
0.02 0.00 0.00 0.52 0.04 0.23 0.23
7.16 7.04 6.97 5.27 8.40 7.39 5.70
9.31 7.70 7.35 6.99 10.40 9.76 7.37
4.24 6.32 6.56 2.57 5.73 3.74 3.17

-16.14 6.05 6.29 1.90 3.63 1.86 0.01
-15.13 -1.66 -1.99 2.71 4.34 2.54 0.49
22.37 53.67 57.41 -3.13 -0.61 -2.20 -1.92
0.89 0.89 0.89 0.94 0.88 0.91 0.93
0.70 0.79 0.80 0.82 0.74 0.77 0.80

-0.40 -2.12 -2.35 0.48 -0.79 0.25 0.21
0.34 0.11 0.11 0.04 0.58 0.39 0.39
0.22 0.23 0.22 0.35 0.37 0.34 0.37
0.39 1.36 1.41 0.35 0.73 0.43 0.42

all best calibration values for both models, black shading indicates best performing
odel for reverse calibration and reverse validation performance metrics.



Fig. 4. Seasonal streamflow calibration results for (a) Model A-2, the modified Thornthwaite seasonal model with minimum average seasonal PRISM temperature inputs, and
(b) Model B-3, the simple water balance model with WASMOD snow component and average seasonal PRISM temperature inputs. Calibration results for the same models, but
using proxy inputs, are presented in detail in Devkota (2013).

Table 4
Performance metrics of the models using calibrated parameter values from shuffled
complex evolution (SCE) method using the proxy reconstructed precipitation and
temperatures for WY 1940–1980.

Performance metric (units) Model A
seasonal

Model B
seasonal

Model A 
annual

Model B 
annual

R2 overall 0.80 0.78 0.36 0.30
R2 warm 0.41 0.34 -- --
R2 cold 0.03 0.00 -- --
RMSE overall (cm) 10.71 10.07 15.17 15.86

RMSE warm (cm) 13.23 13.78 -- --

RMSE cold (cm) 6.46 3.57 -- --
% Bias overall -19.33 0.77 0.95 16.63
% Bias warm -12.61 1.06 -- --
% Bias cold -68.23 -1.19 -- --
NSE overall 0.75 -0.29 0.33 0.11
NSE warm 0.32 0.31 -- --
NSE cold -2.40 -0.04 -- --
RRMSE overall 0.65 0.56 0.39 0.59
RRMSE warm 0.37 0.63 -- --
RRMSE cold 0.85 0.49 -- --

RMSE = root mean squared error; NSE = Nash Sutcliffe Efficiency; RRMSE = relative
root mean squared error. Black shading indicates best performing model for each
set of calibration performance metrics.
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The incremental parameter analysis for the Thornthwaite sea-
sonal water balance model (Model A-2) showed that rfactor, melt-
max, Initial GS, and STC are more sensitive than other parameters
(Fig. 5a). For the simple water balance model with WASMOD and
average seasonal temperatures (Model B-3), a1, a, and c are more
sensitive than other parameters (Fig. 5b).

We compared calibrated parameter values obtained using
tree-ring precipitation and temperature with those obtained using
PRISM data (Table 5). For Model A, values of meltmax, rfactor, STC,
GS, and Initial surface water were similar, whereas values of drofrac,
Train, and Tsnow were quite different. Model A was less sensitive to
these latter parameters, with small changes in RMSE for different
values of these parameters (Fig. 5a). For Model B, values of a, b, c,
d, changed by only 5–13%, but the value of a1 increased from 1.42
to 3.11�C when using tree-ring data and Initial GS changed from
1.70 cm to 13.18 cm (Table 5). RMSE did not change very much when
a1 and Initial GS were changed except when a1was between about 0
and 0.4�C (Fig. 5b). Thus, these differences in values of a1 and Initial
GS were likely due to model insensitivity to these parameters rather
than changes in the input variables.

Based on our analysis, the modified Thornthwaite model (Model
A) was the best choice for reconstructing hydrologic parameters.
The extended streamflow record from WY 1500 to 1980 (Fig. 6a)
shows dry and wet episodes that were ranked (Table 6) based on
duration, absolute magnitude, and absolute maximum (or peak)
as suggested by Biondi et al. (2008). To demonstrate the utility of
the mechanistic approach, the snow water equivalence (SWE;
cm) remaining at the end of each WY and annual actual evapo-
transpiration (AET) were also plotted (Fig. 6b and c). Linear corre-
lations between modeled SWE and measured SWE from five sites
in the Upper West Walker River basin (Leavitt Meadows, Sonora
Pass, Virginia Lakes, Virginia Lakes Ridge, and Willow Flat)
between WY 1947 and WY 1980 had an average R2 of 0.37 (range
0.30–0.51; Fig. 7).

Runoff anomalies, which were computed using the long-term
mean of 31.6 cm, identified a total of 188 episodes, half positive
(wet) and half negative (dry). The longest duration was the early
1900s pluvial, which in this reconstruction occurred during 1900–
1923 (a 24-year wet interval), followed in terms of duration by a
12-year dry spell (1840–1851). Using the combination of duration,
magnitude, and peak scores, the two strongest episodes were wet
ones, i.e., the early 1900s pluvial and another 11-year positive spell
from 1965 to 1975 (Table 6). The three strongest droughts, each
with decadal-scale duration, occurred from the late 1700s to the
mid-1800s. The ‘Dust Bowl’ period, which in this reconstruction
corresponds to a negative interval from 1927 to 1933, was not
among the strongest episodes, as it ranked in 21st position overall.



Fig. 5. Change in RMSE from SCE calibrated RMSE (cm) when parameter values are changed by 10 % over the feasible parameter space one at a time for (a) Model A-2 and (b)
Model B-3.

Table 5
Parameter values obtained from Model A-2 and Model B-3 during the calibration
period (WY 1940–1978) using PRISM precipitation and temperatures and from Model
A and Model B during the calibration period (WY 1940–1980) using tree ring
precipitation and temperatures.

Parameter (units) Model A-2 Model A Model B-3 Model B

Train (�C) 0.10 0.90
Tsnow (�C) �7.09 �1.39
drofrac 0.00 1.00
meltmax 1.00 1.00
STC (cm) 180.80 176.53
rfactor 0.88 0.94
a1 (�C) 1.42 3.11
a2 (�C) 0.29 0
a 0.64 0.59
b 0.41 0.43
c 0.37 0.30
d 0.63 0.70
Initial groundwater

storage (GS) (cm)
184.41 190.44 1.70 13.18

Initial surface water (cm) 2.46 1.97
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4. Discussion

Comparison of our model results to previous studies indicate
similar or better performance than those for Saito et al. (2008),
Solander et al. (2010), and Gray and McCabe (2010), although addi-
tional factors such as geographic areas, calibration series, and tree-
ring data could have affected differences in model performance.
The R2 of 0.80 for Model A, the modified Thornthwaite model with
proxy precipitation and temperature inputs, was better than the
correlation coefficient of 0.71 for the application of the Thornthwa-
ite model by Gray and McCabe (2010). The calibration and valida-
tion R2 values for the simple water balance model with WASMOD
snow component and PRISM precipitation and temperatures
(Table 3) were better than the R2 obtained by Saito et al. (2008)
and Solander et al. (2010), both also based on the simple water bal-
ance model using PRISM precipitation and temperature.

The calibrated value of parameter a (proportion of precipitation
that becomes runoff) for Model B was about 0.6 (Table 5), meaning
that about 60% of the incoming precipitation was treated as surface
runoff. These values seem reasonable given the classification of the
soils in the watershed as Soil Group D with slower infiltration rates
and higher surface runoff (Natural Resources Conservation Service,
2006). For Model A, the estimation of runoff is more complex. The
parameter drofrac for Model A represents the proportion of precip-
itation that becomes runoff for estimation of soil moisture storage
and was calibrated as 0.00 for PRISM inputs and 1.00 for proxy
inputs. The former value is not very realistic given the soils classi-
fication for the watershed. However, rfactor (the proportion of sur-
plus available for runoff that becomes runoff) for both PRISM
inputs and proxy inputs for Model A were large (0.88 and 0.94),
which is more similar to a values for Model B.

The calibrated value of parameter b (proportion of infiltrated
water that is evapotranspired) for Model B was 0.41 with PRISM
inputs, and 0.48 with proxy inputs. Multiplication of parameter b
and the proportion of water infiltrated (1 � a) yielded estimated
evapotranspiration of 26.2% and 25.4% of the total average annual
precipitation (i.e., 19.2 cm and 18.6 cm) in Model B for PRISM
inputs and proxy inputs, respectively, during the calibration per-
iod. These values are about half of the upper range of estimated



Fig. 6. Reconstructed hydrologic parameters for the upper West Walker River basin using Model A with proxy seasonal precipitation and temperature. Time series episodes
with respect to the long-term average (horizontal dashed line) from 1500 to 1980 were highlighted with grayscale filling. (a) Water year streamflow (cm), (b) April 1 snow
water equivalent (SWE, cm), (c) Actual evapotranspiration (AET, cm).

Table 6
List of the 10 strongest episodes for reconstructed water year streamflow (cm) from 1500 to 1980 (see Fig. 6a for a time series plot). The episode score was computed using
anomalies (= deviations from the long-term mean) by ranking separately duration, magnitude, and peak (see text for details).

Start (year) End (year) Episode type Duration (yrs) Absolute magnitude (cm) Absolute maximum (cm) Score

1900 1923 Pos 24 314.0 36.12 563
1965 1975 Pos 11 162.3 33.12 555
1840 1851 Neg 12 172.6 23.88 546
1780 1788 Neg 9 149.1 26.58 543
1827 1837 Neg 11 110.1 25.48 541
1608 1617 Pos 10 147.5 24.12 539
1875 1882 Pos 8 82.9 30.82 535
1794 1802 Neg 9 92.8 24.78 533
1815 1825 Neg 11 119.3 20.38 529
1654 1660 Neg 7 115.2 23.38 527

Fig. 7. Comparison of reconstructed April 1 snow water equivalent (SWE, cm)
shown in Fig. 6b with average measured SWE for WY 1947–1980 derived from five
sites in the upper West Walker River basin (Leavitt Meadows, Sonora Pass, Virginia
Lakes, Virginia Lakes Ridge, and Willow Flat). Error bars represent the standard
deviation of measured SWE.
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mean annual actual evapotranspiration (31–40 cm) for Mono
County, California which contains much of the upper West Walker
River Basin (Sanford and Selnick, 2013).

A similar calibration parameter related to the estimation of
evapotranspiration is not part of Model A; however, one of the
advantages of the mechanistic approach is that we can examine
model estimations of evapotranspiration to see if they are reason-
able. Calibration results with proxy inputs show an average annual
actual evapotranspiration (AET) estimate of 36.2 cm for Model A,
whereas Model B had an average annual evapotranspiration esti-
mate of 13.3 cm. For the entire reconstruction period (e.g., 1500–
1980), average annual AET was 36.0 cm with Model A. Thus, the
values determined with Model A were within the range estimated
by Sanford and Selnick (2013). The process for estimating AET with
Model A only relies on the proxy temperature inputs, whereas the
estimation of evapotranspiration for Model B involves both the
proxy temperature and proxy precipitation inputs.

Both the modified Thornthwaite model (Model A) and the sim-
ple water balance model with WASMOD snow component (Model
B) performed well when comparing estimates of streamflow
against gaged data in the upper West Walker River basin. Further,
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both models have sensitive parameters that could be used to
develop ‘‘what if’’ scenarios involving changes in streamflow due
to climatic and non-climatic perturbations. For instance, the
Thornthwaite model (Model A) could be used to test impacts of
air temperature changes on estimated streamflow. However,
Model A does not have a parameter that directly links to ET, so
direct tests of ET impacts on streamflow from changes in vegeta-
tion or land cover cannot be quantified. The simple water balance
model with WASMOD snow component (Model B) has model
parameters that could be used to test changes in streamflow due
to changes in watershed characteristics (Fig. 5b). However, the
parameter that is directly related to ET (parameter b) is not very
sensitive, though parameter a could be employed to test changes
in streamflow due to changes in land cover and ET due to changes
in runoff coefficient.

The performance statistics for the cold–wet season streamflows
were consistently worse than the statistics for the warm–dry sea-
son streamflows. This is because cold–wet season precipitation
accounts for most of the streamflow during the year, and most of
the streamflow (an average of 86% of the water year total) occurs
in the warm–dry season. Thus, the time lag between precipitation
and streamflow likely results in the better model performance for
the warm–dry season.

The high performance metrics, especially R2, of the seasonal
models may be partially due to the seasonal differences between
warm–dry and cold–wet temperature and precipitation. To test
this possibility, we estimated streamflows with the two models
using annual proxy precipitation and temperature values. After
SCE calibration with proxy inputs, the modified Thornthwaite
model (Model A) had an R2 of 0.36 with RMSE of 15.17 cm, and
the simple water balance model with WASMOD inputs had an R2

of 0.30 with RMSE of 15.86 cm. The R2 values are similar to the sta-
tistics of the proxy precipitation regressions (Fig. 3a), so improved
estimation of proxy inputs could improve model results. As
another comparison, a linear regression model of water-year
streamflow with the proxy inputs as predictors yielded significant
coefficients with appropriate signs (positive for precipitation, neg-
ative for temperature) and an adjusted R2 of 0.38.

Performance of our water balance approach is difficult to com-
pare with other reconstructions because of different number of
predictors, time periods, environmental factors, and ways to com-
pute streamflow itself. Even though direct correlations between
proxy records and their target climate variables were relatively
low, the skill of the watershed model for reconstructing water-year
flow was high. This suggests that our seasonal water-balance
model is indeed combining the proxy inputs in a way that
effectively enhances their ability to simulate observed streamflow.
It should be noted that stochastic, rather than mechanistic,
modeling of seasonal time series is complicated by the inherent
periodicity in several statistical characteristics that invariably
lead to stochastic models with periodic parameters (Salas and
Obeysekera, 1992).

The advantage of a mechanistic approach, regardless of how
well it fits error-prone observations, is the ability to assess sources
of uncertainty to determine where model improvement is neces-
sary, and to estimate hydrologic parameters not initially available
(for yet another example, see Huang et al., 1996). In this applica-
tion, it was possible to concurrently estimate streamflow, evapo-
transpiration, and April 1 snow water equivalent, which is used
extensively to estimate water resources in the western US (Mote,
2003; Timilsena and Piechota, 2008). The sensitivity analysis and
comparison of model estimations for streamflows, evaporatranspi-
ration, and snow water equivalence were done to examine uncer-
tainty in the parameter values and their physical interpretation.
Since model over-fitting is a concern, we also performed a Monte
Carlo analysis of model parameters, and the results, which are
included in Devkota (2013), supported the sensitivity analysis
shown in Fig. 5. Further research should explore model sensitivity
and performance for estimating evapotranspiration, as well as
model uncertainties related to input variability and parameter
estimation.

Reconstructed streamflow episodes highlighted the pluvial per-
iod of the early twentieth century and the drought of the mid-
1800s. The strongest wet and dry episodes from the streamflow
reconstruction were similar to those for precipitation reconstruc-
tions in the same area (Biondi et al., 2008), but some similarity
was also found with streamflow episodes reconstructed further
east in Spring Valley, Nevada (Strachan et al., 2012), which lies in
the central Great Basin near the Utah-Nevada border. In the Walker
Basin reconstructed streamflow record, the dry period of the ‘Dust
Bowl’ ranked far below the strongest episodes (21st place), similar
to what was found for the nearby precipitation reconstruction
(Biondi et al., 2008). The proxy record to the east (Strachan et al.,
2012), which was for streamflow, indicated a much stronger ‘Dust
Bowl’ drought, and additional evidence for spatial variability in the
severity of drought episodes over the Great Basin has since been
published (Biondi, 2014).

Additional comparisons with existing reconstructions included
the Sacramento River streamflow developed by Meko et al.
(2001), which was obtained from the NOAA/NGDC Paleoclimatolo-
gy Program, and the summer (June to August) Palmer Drought
Severity Index (PDSI; Alley, 1983) proxy series at intervals of 2.5�
of latitude and longitude for all of North America (Cook and
Krusic, 2004; Cook et al., 2004). The four PDSI grid nodes nearest
to the Upper West Walker watershed are identified as 58
(117.5�W, 40.0�N), 59 (117.5�W, 37.5�N), 46 (120.0�W, 40.0�N),
and 47 (120.0�W, 37.5�N). Linear correlations estimated using the
Pearson’s sample coefficient (r) for the period of overlap (1500–
1977) showed that our streamflow reconstruction was better cor-
related (r = 0.5) with Great Basin proxy series (PDSI 58) than with
Sierra Nevada ones (r = 0.4 with all other reconstructions).
5. Final remarks

The water balance approach we have outlined is suitable for
semi-arid areas in the western United States and elsewhere when
sparse instrumental data are available to parameterize common
hydrologic models. In addition, estimated model parameters can
be used to assess the overall hydrology of the watershed, and at
the same time their values can be checked against existing infor-
mation on water balance components. Given its limited input
requirements, this approach performed adequately with proxy
inputs (precipitation and temperature) to generate past stream-
flow, and could then be used to examine the influence of factors
independent of streamflow (e.g., evapotranspiration, infiltration,
and non-climatic factors such as land use changes) on its recon-
structions. Improvements in proxy inputs, especially by means of
localized air temperature reconstructions, should boost the perfor-
mance of these mechanistic models and improve their insights into
sensitivities and uncertainties.

Our water balance model could also be used with time series of
future climatic variables generated from general circulation mod-
els (GCMs) to predict changes in water resources. These applica-
tions would provide concerned stakeholders with valuable
information for water resources planning and management. Hence,
we argue that the use of mechanistic modeling that only require
proxy data inputs of precipitation and temperature for streamflow
reconstructions has promise for extending streamflow records and
improving estimates of watershed vulnerability to climate change,
which could help water managers and policy makers to plan for
mitigation of water resource deficits.
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Appendix A. Additional equations for models

A.1. Equations used in modified Thornthwaite model (Model A)

Psnow;t ¼ Ptotal;t �
Train � Tt

Train � Tsnow

� �
0:1 < Train < 5; �10 < Tsnow < 1

ðA:1Þ

Prain;t ¼ Ptotal;t � Psnow;t ðA:2Þ

DROt ¼ Prain;t � drofrac; 0:1 < drofrac < 1 ðA:3Þ

Premian;t ¼ Prain;t � DROt ðA:4Þ

SMFt ¼
Tt � Tsnow

Train � Tsnow

� �
�meltmax; 0:0 < meltmax < 1 ðA:5Þ

SMt ¼ snoster � SMFt ðA:6Þ

PETt ¼ 13:97� d� D2 �Wt ðA:7Þ

Wt ¼
4:95 � e0:62�T

100
ðA:8Þ

Pliquid;t ¼ Premain;t þ SMt ðA:9Þ

STt ¼ STt�1 � abs Pliquid;t � PETt
� �

� STt�1

STC

� �	 

ðA:10Þ

STWt ¼ STt�1 � STt ðA:11Þ

AETt ¼
PETt for Pliquid;t P PETt

Pliquid;t þ STWt for Pliquid;t < PETt

� �
ðA:12Þ

St ¼ STt � STC ðA:13Þ

ROt ¼ ðSt þ Initial surface watertÞ � rfactor þ DROt ðA:14Þ

Intial surface watert ¼ St�1 þ Intial surface watert�1 � ROt�1

ðA:15Þ

where Ptotal,t = total precipitation in season t (mm); Prain,t = total
precipitation in a season that is rainfall (mm); Psnow,t = total
snowfall in a season(mm); Tsnow = temperature threshold below
which all seasonal precipitation is considered as snow (�C);
Train = temperature threshold above which all seasonal precipitation
is considered as rainfall (liquid precipitation) (�C); ROt = runoff
(mm); DROt = direct runoff in a season (mm); drofrac = direct runoff
coefficient; Premain,t = total remaining precipitation (mm); SMFt =
snowmelt fraction; meltmax = maximum melt rate; SMt = total
snowmelt in a season (mm); PETt = potential evapotranspiration
using Hamon (1961) equation (mm); d = number of days in a
season; D = mean seasonal hours of daylight in units of 12 h; Wt =
saturated water vapor density (gm/m3); STt = Soil moisture storage
in season; STWt = soil-moisture storage withdrawal; STC = soil
moisture storage capacity (mm); St = surplus; rfactor = runoff factor.

A.2. Equations used in simple water balance model with WASMOD
snow component (Model B)

SRt ¼ a � Pt ; 0 6 a 6 0:9 ðA:16Þ

ETt ¼ b � It ; 0 6 b 6 1 ðA:17Þ

BFt ¼ c � GSt�1; 0 6 c 6 1 ðA:18Þ

GFt ¼ d � GSt�1; 0 6 d 6 1 ðA:19Þ

It ¼ Pt � SRt ðA:20Þ

DPt ¼ It � ETt ðA:21Þ

GSt ¼ GSt�1 þ DPt � BFt � GFt ðA:22Þ

Qt ¼ SRt þ BFt ðA:23Þ

where a = fraction of snowmelt and rain that becomes runoff;
b = fraction of infiltration that becomes evapotranspiration; c = frac-
tion of groundwater storage that becomes base flow; d = fraction of
groundwater storage that becomes groundwater flow; Snt = sea-
sonal snowfall component (cm); Pt = seasonal precipitation (cm);
a1 = temperature threshold above which snowfall starts to become
rainfall; a2 = temperature threshold above which snowmelt begins;
Rt = seasonal rainfall (cm); Mt = seasonal snowmelt (cm); SRt = sur-
face runoff for season t (cm); ETt = evapotranspiration for season t
(cm); BFt = base flow for season t (cm); GFt = groundwater flow for
season t (cm); It = infiltration for season t; DPt = deep percolation
for season t; GSt = groundwater storage for season t v; GSt�1 =
groundwater storage for previous season (or initial boundary condi-
tion for season 1) (cm); Pt = precipitation for season t (cm); and
Qt = streamflow for season t (cm).
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