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Stochastic modeling of pool-to-pool structure 
in small Nevada rangeland streams 

Thomas J. Myers and Sherman Swanson 
University of Nevada, Reno 

Abstract. We developed, calibrated, and verified a compound Poisson process model of 
pool-to-pool spacing and size using an exponential distribution for spacing and gamma 
distributions for length and width on 12 rangeland streams in Nevada. Neither distribution 
parameter varied with simple stream morphologic or vegetation characteristics. We 
verified the model by comparing the first three moments and distributions of stream 
simulations with observed streams using two transect-based sampling schemes. Very small 
errors stemmed from an inability to reproduce autocorrelation of width at short distances, 
pool cyclicity, and additional density at the tails. We conclude that the presented model is 
accurate for small, Nevada, rangeland streams and for pools located randomly on small 
streams with forced pool-riffle or step-pool sequences and regularly on larger, pool-riffle 
systems. Simulated streams may be used for testing stream survey procedures and 
hypotheses regarding pool habitat, spacing, and length. 

Introduction 

The spacing of pools along a stream is often reported as five 
to seven channel widths for alluvial riffle-pool streams [Keller, 
1972; Keller and Melhorn, 1978] and one to four channel widths 
for steeper, step-pool streams [Chin, 1989; Grant et al., 1990]. 
Pool spacing and area have been linked to pool or stream type 
[Myers and Swanson, 1991; Montgomery et al., 1995] and for- 
mative features [Keller and Swanson, 1979; Marston, 1982; Ro- 
bison and Beschta, 1990]. Neither various types of development 
nor substantially different structural geology has led to differ- 
ences in pool spacing [Keller, 1978; Keller and Melhorn, 1978; 
Gregory et al., 1994]. Grant et al. [1990] and Keller and Melhorn 
[1978] found much variability in pool spacing. Keller and Mel- 
horn [1978] presented histograms of pool spacing but did not 
consider the concept of frequency distribution. 

Pool spacing includes the length of the pool and the inter- 
vening nonpool geomorphic unit. Wohl et al. [1993] and Hubert 
and Kozel [1993] found substantial variation of the pool/riffle 
area ratio with gradient but did not consider spacing. Indi- 
rectly, many authors considered the length of steps between 
pools by finding a linkage with the energy dissipated [e.g., 
Marston, 1982; Chin, 1989; Thompson, 1995]. However, we 
found no literature combining frequency distributions of pool 
and nonpool lengths. 

The purpose of this paper is to present a stochastic model of 
the occurrence of pools and nonpools along a stream. We 
modeled the length of the nonpool reach with an exponential 
distribution and the length of pools and widths of all units with 
a two-parameter gamma distribution. Cumulative pool length 
on a stream reach is a compound Poisson process. This ap- 
proach allows us to simulate stochastically homogeneous 
stream reaches specified by stochastic model parameters which 
have a physical basis. Stochastic homogeneity of a stream reach 
requires that all measured parameters be drawn from the same 
population. Simulated streams may be used for testing stream 
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survey procedures and hypotheses regarding pool habitat, 
spacing, and length. Stochastically homogeneous physical 
stream reaches are too short for adequate simulation experi- 
ments of sampling [Myers, 1996]. 

Background 
Stochastic modeling and simulation has ample precedence in 

geomorphology [LeopoM and Langbein, 1962; Price, 1974; 
Shreve, 1974; Kirchner, 1993]. Poisson process modeling, 
whereby an exponential distribution describes the spacing, is 
useful for spatially or temporally random events [Law and 
Kelton, 1991] such as thunderstorm [Rodriguez-Iturbe et al., 
1987], winter storm [Duckstein et al., 1975; Bonser et al., 1985], 
and flood arrival [Kavvas, 1982; Nachtnebel and Konecny, 1987; 
Caissie and El-Jabi, 1991; Clarke, 1991] or spatial locations of 
thunderstorms [Rodriguez-Iturbe et al., 1986; Jacobs et al., 
1988]. In fluvial hydrology, several authors considered the 
movement of individual sediment particles [Troutman, 1980] or 
bed load transport events [Carling and Hurley, 1987; Hurley, 
1992] as a Poisson process. Compound Poisson process mod- 
eling has the added characteristic that the size (time, length, or 
area) of the event is also considered such that the model 
represents with length or time a cumulative value such as 
contaminant infiltration breakthroughs [Pegram, 1980], effec- 
tive precipitation [Pegram, 1980], or the longitudinal profile of 
a stream [Nordin and Richardson, 1967]. 

Methods 

A distinct habitat unit (pools and nonpools to avoid distinc- 
tions among other habitat types) was a feature that spanned 
the stream at some point along its length. Beginning at the 
upstream end of a chosen reach, we measured the length of 
each habitat unit and water widths at each end and in the 

middle according to Hankin and Reeves [1988]. We surveyed at 
base flow when streamflow consists almost entirely of ground- 
water return flow [Mosley and McKerchar, 1993], which we 
assumed was occurring when spring runoff had ceased and flow 
rates had become essentially constant. Repeatability of the 
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Figure 1. Location Map: SR, Santa Rose Mountains; NBR, 
North Black Rock Mountains; DESA, Desatoya Mountains; 
TOIY, Toiyabe Mountains; and CAR, the Carson Range. The 
scale of symbols indicate the number of sites in a specific 
mountain range. See Table 1 for which site is located in each 
mountain range. 

identification of basic units is high [Roper and Scarnecchia, 
1995]. Following Grant et al. [1990], we consider a pool to be a 
distinct habitat unit with gradient less than average reach gra- 
dient and subcritical flow over at least 85% of the surface area 

of the unit. This definition allows supercritical inflow chutes or 
plunges to be included in the measurement of pool area. 

For many units, precise beginning points are nebulous 
[Montgomery et al., 1995]. We determined lengths of units 
between points where the fraction of water width occupied by 
the unit equalled one half of the total width. Occasionally, the 
downstream end of a pool flows into another pool with only a 
very short, irregular nonpool unit separating them. Having 
measured many hundreds of units, we determined that the 

minimum length we could accurately measure was 0.25 m; 
therefore the length of some very short nonpool units were 
rounded to zero. The impact of this roundoff on descriptive 
statistics is minimal because average length usually exceeded 
three widths, which is at least 3 m. There were no very short 
pools (<0.25 m) that spanned the stream. Pocket pools and 
other small pools were not individual units. As suggested by 
Montgomery et al. [1995], these definitions may not apply to 
cascades, but none of our sites had many cascades. 

All length and width measurements were rounded to the 
nearest 0.05 m. Therefore, while actual unit lengths and widths 
are continuous variables, our measurements are discrete. For 
example, a range of 2 m has 40 possible discrete values. For 
comparison among streams of any size, all length and width 
measurements were standardized, with the average water 
width determined from systematically spaced transects (cross 
sections perpendicular to the channel centerline) [Myers, 1996]. 

Study Area 
We chose 12 long (>67 channel widths, most > 125 widths) 

stream segments in five mountain ranges of central and north- 
western Nevada (Figure 1) to evaluate our model. They were 
chosen to represent stream types found in Nevada by mimick- 
ing a distribution of types found previously [Myers and Swan- 
son, 1991]. All are within the basin and range geologic province 
[Stewart and Carlson, 1978]. Dominant watershed vegetation 
types range from sagebrush steppe to pinyon-juniper wood- 
lands. Riparian vegetation includes shrubs, trees, forbs, and 
graminoids. Dominant land management is primarily livestock 
grazing. Table 1 lists general characteristics of the study 
reaches, including categories of ungulate damage, soil type, 
and dominant vegetation. 

We classified our study sites with two widely used classifica- 
tion systems [Montgomery and Buffington, 1993; Rosgen, 1994] 
to aid in description and interpretation and because of their 
common use in land management agencies. Three Rosgen 
[1994] types were represented in our reaches. The active chan- 
nel of B4 streams is moderately entrenched and sinuous with a 
moderate width/depth ratio, gradient (2-4%) and a gravel- 

Table 1. Characteristics of Study Sites 

Channel Water Rosgen MB Pool Pool 
Stream L, Width, Width, Stream Stream Dominant Dominant Dominant Ungulate Area Spacing 
Name Pools m m m Type* Type* Soil* Geology • Vegetation Damage" (Fraction) (Widths) 

Smith U 40 500 1.96 1.24 B4 SP CGr Tt2 aspen heavy 0.26 7.85 
Smith D 53 398 2.09 1.23 C4 PR GrS Tt2 bare heavy 0.47 7.53 
Reese R 18 500 4.92 3.04 C4 PR S Qa grass light 0.50 11.97 
Big Den D 22 300 1.38 0.69 C4 PR GrS Tt2 sedge light 0.18 18.60 
Big Den U 42 300 1.53 1.08 B4 SP CS Tt2 aspen light 0.30 6.26 
Big Mead 74 500 1.15 0.81 E4 PR SSi Tmi sedge light 0.20 8.80 
Cabin D 51 309 2.34 1.40 C4 PR SSi Tr3 sedge light 0.76 5.35 
Cabin U 61 388 1.34 0.86 B4 fPR SiGr Tr2 will. light 0.45 7.25 
Mahogany 59 504 2.62 1.60 C4 fPR GrS Tr2 aspen none 0.40 5.34 
Summer C 62 501 1.94 1.44 B4 fPR SGr Tr2 aspen none 0.23 5.59 
Washington 44 441 2.41 1.97 B4 fPR CGr CZq will. light 0.36 5.11 
Willow 63 400 1.63 1.14 B4 fPR CGr Tt2 W.Rose. none 0.33 5.49 

*Rosgen (1994); see text for descriptions. 
*Montgomery and Buffington (1993); PR is pool-riffle; fPR is forced pool-riffle; SP is a stepped pool system. 
*Dominant soil of the channel banks; C is cobbles; Gr is gravel; S is sand; Si is silt/clay. 
•Dominant geology of the watershed [Stewart and Carlson, 1978]: Qa is alluvial deposits; Tt2 is welded and nonwelded silicic ash flow; Tr2, Tr3 

are rhyolitic flows and shallow intrusive rocks; Czq is quartzite; Tmi is intrusive rock of marie and intermediate composition. 
IILevel of damage by ungulates, primarily domestic livestock. Based on a rating from 0 to 5 where 0 represents completely trampled and no 

vegetation ungrazed and 5 represents no damage. For this analysis, ungulate damage was categorized as none, light, or heavy. 
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dominated substrate (2-64 mm). C4 streams are slightly en- 
trenched and very sinuous, have a high width/depth ratio 
(>12), low gradient (<2%) and a gravel substrate. E4 streams 
are similar to C4 streams except that they have a narrow 
channel (low width/depth ratio, <12). The low entrenchment 
of C4 and E4 streams suggests that floodwaters easily access 
their floodplain. Three Montgomery and Buffington [1993] types 
were noted as well. Pool-riffle channels exhibit regularly spaced 
bars (riffles) and free-formed pools. A free-formed pool is not 
forced by structural elements such as debris or boulders and 
may result from scour and deposition in conjunction with the 
tendency for meandering [Yang, 1971; Keller, 1972; Keller and 
Melhorn, 1978]. Forced pool-riffle channels generally have 
pools scoured as a result of directional currents from structural 
elements [e.g., Robison and Beschta, 1990]. Step-pool channels 
have pools formed by plunges over channel-spanning structural 
elements. 

Table 2. Exponential Distribution Parameter, ,•, and 
Goodness-of-Fit Comparison With Empirical Distributions 
by )(2 Test for the Standardized Distance Between the 
Downstream End of One Pool and the Upstream End of the 
Next Pool (Nonpool Lengths) 

Reach n • K )(2 p 

Smith U 40 6.61 8 8.00 0.333 
Smith D 54 4.04 8 6.03 0.536 

Reese R 17 6.34 4 8.18 0.042 

Big Den D 22 17.5 4 4.91 0.178 
Big Den U 43 5.11 8 6.00 0.540 
Big Meadow 74 3.42 10 9.24 0.415 
Cabin D 51 1.26 8 7.51 0.378 

Cabin U 62 4.08 10 6.70 0.669 

Mahogany 59 3.37 10 10.7 0.300 
Summer Camp 62 4.56 10 18.6 0.029 
Washington 44 3.94 8 5.82 0.561 
Willow 63 4.09 10 12.4 0.192 

Model Development 
The length of pools and of intervening nonpools both affect 

pool spacing. Pool length ranges from near 0 to many widths 
(our minimum field-measured length is 0.25 m, which ranges 
from 0.05 to 0.3 widths depending on the stream). We theo- 
rized, on the basis of observed histogram shapes, that a gamma 
distribuhon would describe pool length. The two-parameter 
gamma distribution is bounded on the left by 0 and ranges to 
infinity on the right. It models the right skewness caused by left 
bounding and has great flexibility in its shape. Specifically, 
based on texts [Law and Kelton, 1991] and experience, the 
gamma distribution fits best when there is little density near 0. 
Because nonpool lengths may equal 0 but have no upper limit, 
we hypothesized that pool locations are random along a ho- 
mogeneous stream and can be represented by an exponential 
distribution. 

Considered together, our hypothesis is that the cumulative 
length of pool along a stream reach is a compound Poisson 
process [Ross, 1982]. A Poisson process is a counting process 
with three requirements. First, the count N at the beginning, 
N(0), equals 0. This states that no pools have occurred at the 
beginning of counting. Second, the process has independent 
increments in space or time. This states that the number of 
pools in an increment of time or space is independent from any 
other increment. Third, the number of pools in any interval of 
length l is Poisson distributed with mean M. That is, for all s, 
l_>0, 

P[N(l + s) - N(s) = n] = e -•t n! n=0,1,... 
(1) 

where s represents the location at the beginning of a reach. 
Then, a stochastic process {X(/), l _> 0} is a compound 
Poisson process if 

N(t ) 

X(l) = •'• r, t- > 0 (2) 

where (N(/), l _> 0) is a Poisson process and {Yi, i = 1, 
2, ... } is a family of independent, identically distributed (IID) 
random variables (which we hypothesized to be gamma dis- 
tributed). The process {N(/), l _> 0} and the sequence {Y i, 
i -> 1 } are assumed to be independent. This means there is no 

Here n is the number of pools, K is the number of categories in the 
X 2 test, and p is significance probability. 

systematic relation between pool length and location along the 
reach. 

In accord with Harvey [1975] and Richards [1976], we found 
that widths differ between pools and riffles and that the two- 
parameter gamma distribution described widths at random 
locations within a pool [Myers, 1996]. However, different pool- 
forming processes lead to differing widths along a pool [Keller 
and Swanson, 1979; Robison and Beschta, 1990]; therefore dis- 
tributions of width at random locations within a pool found by 
Myers [1996] do not apply to widths at systematic locations 
(middle, upstream, and downstream) used in this model. The 
properties of the two-parameter gamma distribution discussed 
above, plus the fact that it can have a mode very close to 1, led 
us to theorize that the two-parameter gamma distribution 
would describe standardized pool widths. There is no reason 
that widths at random locations along a nonpool reach should 
differ from the middle of the reach; therefore we used the same 
distributions fit for nonpools in Myers [1996]. 

Distribution of Nonpool Lengths 

The density function of the exponential distribution is 

1 

f(RL) = • e -}•I•/• if RE _> 0 (3a) 

f(RL) = 0 otherwise (3b) 

where RL is the standardized distance from the downstream 

end of a pool to the upstream end of the next pool. By the 
method of moments, the parameter, ,•, is the mean of the 
sample. We tested the fit with a )(2 goodness-of-fit test for H0: 
the data are IID random variables with distribution function 

exp (,•). Rejecting H 0 when X 2 > X•c-l,l-p (P = 0.10) and 
using equiprobable categories based on minimum expected 
values equal to 5 [Law and Kelton, 1991], we accepted the 
chosen distribution on 10 of 12 study reaches (Table 2). For 12 
tests we expect to reject H 0 once withp _< 0.1 by chance alone 
(that is, commit a type 1 error [Sokal and Rohlf, 1981]). Ac- 
ceptance of H 0 suggests that pools locate randomly on these 
streams. This may be especially true on streams with forced 
scour or step pools formed by randomly spaced structural 
elements. 
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Table 3. Gamma Distribution Parameters (a,/3) Estimated 
by the Method of Moments and Goodness-of-Fit 
Comparison by X 2 Test With Empirical Distributions for the 
Standardized Length of Pools 

Reach n a /3 )(2 p 

Smith U 40 3.77 0.330 8.02 0.532 
Smith D 54 6.32 0.552 5.30 0.811 
Reese R 17 1.89 2.98 3.88* 0.422 

Big Den D 22 5.18 0.212 0.73* 0.945 
Big Den U 43 2.88 0,398 14.9 0.094 
Big Meadow 74 0.787 6.84 26.3 0.002 
Cabin D 51 3.75 1.09 8.80 0.456 
Cabin U 62 4.12 0.770 13.2 0.155 

Mahogany 59 2.91 0.678 7.95 0.539 
Summer Camp 62 3.33 0.309 23.5 0.005 
Washington 44 4.65 0.251 5.09 0.826 
Willow 63 3.01 0.466 21.9 0.009 

Number of categories in the X 2 test, K = 10, except as noted; n is 
the number of pools, P is significance probability. 

*K= 5. 
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Figure 2. Comparison of observed with exponential pool 
spacing for select streams. 

Cabin Creek U is typical (Figure 2). More pools had short 
spacings, resulting in the category of longest spacings being 
very wide in comparison with other categories. On Cabin 
Creek U, approximately 20% of pool spacings were less than 
1.0 width, while just 10% ranged from 9 to 16 widths. The 
Reese River and Summer Camp Creek were not fit by the 
exponential distribution (Table 2, Figure 2). There is little 
similarity between these two streams in size, stream type, pool 
area, vegetation, soils, substrate or ungulate damage (Table 1). 
The Reese River is flat with riffles separating most pools lead- 
ing to no measurements near 0 where the exponential distri - 
bution has the most density. Many researchers [Keller and 
Melhorn, 1978; Montgomery et al., 1995] have noted the pres- 
ence of riffles between pools on this type of stream, which 
corresponds to descriptions of pool formation due to changing 
flow directions and velocities [Keller, 1971, 1972] on streams 
that do not have forced pools. Apparently, large pool-riffle 
streams have regular, rather than random, pool spacings. The 
rejection of Summer Camp Creek is due to different counts in 
categories between five and eight spacings, which likely does 
not have a physical explanation and is random. Whenp <_ 0.1, 
we expect rejection of at least one test in 11. Thus we accept 
the overall hypothesis that the distance between pools on 
streams with primarily forced pools is exponentially distrib- 
uted. 

Using one-way analysis of variance, we tested for and re- 
jected differences in X among ungulate damage levels, Mont- 
gomery and Buffington [1993] stream types, and dominant soil 
and vegetation types (F = 0.2, p = 0.818; F = 0.65, p = 
0.544; F = 1.23, p = 0.338; and F = 0.34, p = 0.801, 
respectively; all categories are described in Table 1). Testing 
for differences between Rosgen [1994] stream types B4 and C4 
(there was only one E4 type) with two sample t tests, we 
rejected the hypothesis that X was different between types (t = 
-0.67, p = 0.517). This suggests that geomorphic and veg- 
etative differences as represented by the two stream-type pro- 
cedures, soil and vegetation types, and ungulate damage levels 
do not explain the differences in the exponential distribution as 
represented by X among streams. 

Distribution of Pool Lengths 

The density of the two-parameter gamma distribution is: 

/3--PL-- •e-rL/t3 
f(PL) = F(a) if PL > 0 (4a) 

f(PL) = 0 otherwise (4b) 

where PL is standardized pool length and a and/3 are param- 
eters. Parameter estimation is by the method of moments 
[Bob•e and Ashkar, 1991]. 

We tested Ho: the data are IID random variables with dis- 
tribution function gamma (a,/3) with a X 2 goodness of fit test. 
Rejecting Ho when X 2 > X•c-1,1-p (P <- 0.10) and using k = 
10 categories chosen to be equiprobable [Law and Kelton, 
1991], we accepted the chosen distribution on 8 of 12 study 
reaches (Table 3). 

Typical accepted fits occurred on Smith Creek D and Wash- 
ington Creek (Figure 3). The flatter Smith Creek D had a 
well-defined distribution with most pools between 2.0 and 5.5 
widths. The steeper, debris- and boulder-influenced, forced 
pool-riffle Washington Creek had most pool lengths well dis- 
tributed between 0.5 and 2.0 widths. 

The number of rejected fits suggests that the gamma distri- 
bution may not be the best descriptor for the pool lengths of all 
streams. The rejection of Willow Creek appears due to random 
fluctuations between one and two widths (Figure 3). Distribu- 
tions of the other three rejected streams (Figure 3) indicate 
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Figure 3. Comparison of observed with gamma fit pool length for select streams. Smith Creek, Downstream, 
and Washington Creek are accepted; the others are rejected. 

fewer pools at shorter lengths than modeled by the distribu- 
tion. Big Den U, which was barely rejected (Table 3), had 
almost no pools shorter than 0.5 widths, which caused its re- 
jection. The other two (Big Meadow and Summer Camp 
Creek) show a definite central tendency. Big Meadow had high 
right skewness and a << /3 due to the occurrence of several 
very long pools. The longer 10% of pools exceeded 13 widths. 
In fact, about 45% of the stream consisted of these long pools. 
On Summer Camp Creek, all pool lengths are less than 3.5 
widths. Its rejection was due to a lack of pool lengths in the 
upper tail of the distribution. 

Although a few distributions are rejected, such rejection 
appears to be controlled by variation in the short end of the 
range; therefore we accepted the gamma distributi6n as a 
descriptor of pool length. The model may have a few too many 
short pools which have little effect on pool area (PA), the 
simulation of which is the objective of the model. Big Meadow, 

with many lengths in the range [1, 5] but also high right skew, 
is probably not fit by any distribution. 

we rejected the hypothesis of difference among groups for a 
(F = 1.37, p = 0.303; F = 0.02, p -- 0.977; F = 0.91, 
p = 0.438; and F = 2.04, p = 0.187, respectively, for 
ungulate damage, Montgomery and Buffington [1993] type, soil 
type, and vegetation type). There were also no differences 
between Rosgen types B4 and C4 (t = -0.49, p = 0.634); 
/3 did not vary among ungulate damage, Montgomery and Buff- 
ington [1993] types or vegetation (F = 0.65, p = 0.544; F = 
1.54, p = 0.266; and F = 1.45, p = 0.299) or betWeen 
Rosgen types B4 and C4 (t = -1.51,p = 0.164). It did vary 
among soil type (F = 3.81, p = 0.063) primarily because/3 
on Big Meadow equaled 6.84 and just one other reach Was in 
the silt/clay category. This suggested that simple geomorphol- 
ogy and vegetation characteristics as represented by the two 
stream type procedures, soil and vegetation types, and ungu- 
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Table 4. Gamma Distribution Parameters (a,/3) Estimated by the Method of Moments 
and Goodness-of-Fit Comparison by X 2 Test With Empirical Distributions for the 
Standardized Water Width at Different Sections of the Pools 

Pool Location a •3 X 2 P rpL, ww 

Smith U; n = 40 
US 6.98 0.139 8.51 0.483 -0.374 
DS 12.8 0.0814 6.50 0.689 -0.131 
MID 11.4 0.0865 2.17 0.988 -0.359 

Smith D; n = 54 
US 21.8 0.0407 8.22 0.512 -0.266 
DS 20.9 0.0551 19.3 0.022 0.293 
MID 26.9 0.0357 7.11 0.626 -0.185 

Reese R; n = 17 
US 20.0 0.0477 2.00* 0.736 -0.079 
DS 31.2 0.0320 2.65' 0.618 0.346 
MID 15.3 0.0686 9.18' 0.057 0.438 

Big Den D; n = 22 
US 6.71 0.144 0.272' 0.992 0.300 
DS 7.52 0.135 10.7 0.220 -0.180 
MID 7.05 0.144 5.73' 0.221 -0.056 

Big Den U; n = 43 
US 5.88 0.163 9.79 0.368 -0.082 
DS 12.3 0.0831 12.6 0.182 0.096 
MID 17.0 0.0607 8.40 0.495 - 0.105 

Big Meadow; n = 74 
US 4.83 0.217 7.80 0.554 0.025 
DS 9.85 0.101 15.2 0.086 0.102 
MID 7.36 0.130 18.4 0.030 0.156 

Cabin D; n = 51 
US 6.42 0.145 9.92 0.357 -0.059 
DS 9.85 0.111 7.63 0.572 0.346 
MID 11.9 0.0822 8.42 0.493 0.062 

Cabin U; n = 62 
US 6.58 0.141 12.2 0.203 0.088 
D S 12.3 0.0854 8.97 0.440 0.363 
MID 7.97 0.128 9.29 0.411 0.205 

Mahogany; n = 5 9 
US 8.17 0.123 10.7 0.300 0.141 
DS 9.28 0.109 9.98 0.352 0.327 
MID 11.3 0.0869 3.54 0.939 0.204 

Summer C; n = 62 
US 9.86 0.0951 10.2 0.337 -0.130 
DS 13.8 0.0786 8.97 0.440 0.014 
MID 11.8 0.0824 6.05 0.735 -0.213 

Washington; n = 44 
US 9.43 0.100 13.7 0.133 - 0.123 
DS 9.60 0.104 3.73 0.928 - 0.059 
MID 12.2 0.0864 5.09 0.826 - 0.049 

Willow; n = 63 
US 7.19 0.138 10.1 0.346 0.073 
DS 8.22 0.123 8.27 0.507 0.113 
MID 14.3 0.0693 9.12 0.426 0.071 

US, upstream; DS, downstream; MID, middle; n, number of pools and of X 2 test categories; P, 
significance probability; tel ' ww, Spearman rank correlation of water width and pool length. K -- 10, 
except as noted. 

*K = 5. 

late damage did not explain the differences among pool length 
stochastic parameters. 

Distribution of Pool Widths 

We theorized that water widths at the downstream and up- 
stream ends and in the middle of pools were distributed ac- 

cording to (4) with water width, ww, substituting for PL. We 
tested Ho: the data are IID random variables following gamma 
(a, /3). Rejecting Ho when X 2 > X•,-1,1--p (P -< 0.10) and 
using k = 10 categories chosen to be equiprobable [Law and 
Kelton, 1991], we accepted the fit on 30 of 36 tests (Table 4). 

One of the best fits, Smith Creek U, middle of pool, showed 
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almost perfect agreement (Figure 4). One of the worst fits, 
Smith Creek D, downstream end of pool, is mostly random 
fluctuation due to the roundoff that occurs when measuring 
width (Figure 4). The gamma distribution is continuous, and 
near the expected value the categories are very small (<0.1 
widths). Our measurements are to the nearest 0.05 m, which is 
only 0.02 widths. Therefore categories near the mean contain 
few potential measurements which leads to high cell X 2 values. 
Also, with p = 0.1, 3.6 of the fits should be rejected. On the 
basis of this and the randomness of some rejections, we ac- 
cepted the gamma distribution for describing systematic pool 
widths. 

Relations Among Pool Length and Width 

Although there is insufficient data to calibrate a conditional 
distribution for width based on pool lengths, we tested for 
correlation of width and pool length (Table 4). The wide scat- 
ter of correlation coefficients among streams does not suggest 
a systematic variation explainable by stream type. The wide 
scatter indicates that any conditional relation varies among 
streams. The lack of data and inability to find stochastically 
homogeneous reaches long enough to collect data from a suf- 
ficient number of independent transects precludes inclusion of 
distributions of width conditioned on the location within a 

pool. 

Simulation Routine 

The model simulates a pool-riffle sequence utilizing the dis- 
tributions described above. We chose the first unit to always be 
a nonpool because of the memoryless property of the expo- 
nential distribution in that [Ross, 1982] 

P(rl > r12 + rl•lrl > rl•)= P(rl > r12) (5) 

where rl is riffle, or nonpool, length. Equation (5) states that 
the probability that the length remaining in a unit starting at 
any point exceeds a given value is independent of the length of 
unit upstream of it. Thus it has no memory and it was unnec- 
essary to assume the starting point is at the upstream end of a 
unit. 

The simulation starts with the length of a nonpool followed 
by the widths at each end and the middle. Then nonpool widths 
at either end of the unit are simulated with distributions for the 

appropriate pool end. Simulation of the middle width in a 
nonpool is with distributions from Myers [1996] for random 
nonpool locations. Then the length and middle and down- 
stream widths of a pool are simulated. The width of the up- 
stream end of a simulated unit is set equal to the downstream 
width of the previous unit. Simulated nonpool lengths less than 
0.25 widths are rounded to 0 and another pool is simulated. 
This roundoff corresponds reasonably to our field sampling 
rules described above. New random numbers are selected for 

each simulated length or width. We simulated one long (1000 
units), stochastically homogeneous series for each stream 
which we subdivided for comparison. 

Verification 

Simulations based on stochastic models do not reproduce 
the deterministic processes from which they were parameter- 
ized. Rather, they reproduce basic probabilistic properties of 
the structure developed by the processes, in this case, pools 
and widths along a stream. The input distributions should be, 
and were, reproduced exactly within round-off error. This ver- 
ifies only that we coded the distributions properly. Note that 
there is no round-off of measurements, as in the field surveys. 
We tested the model by comparing moments and histograms of 
width and PA based on similar independent sampling of widths 
and pools of the actual and simulated stream. We used a 
Monte Carlo randomization scheme to subsample widths and 
PA of the actual and simulated stream [Myers, 1996]. The 
sampling was based on systematic transects with starting loca- 
tion chosen from U(0, L - L•) where U is the uniform 
distribution, L is reach length, and L• is subreach length 
(equal to spacing x (n - 1), where n is the number of 
transects) in widths. Additional transects were sampled at 
spacings of 1/(n - L•) widths in the downstream direction. 
For comparison we used two schemes to represent properties, 
such as covariance, of the pool-riffle sequence in the transect 
series. The mean width was also determined for the following 
survey schemes described for PA. 

PAGAWS = 

5 

Z WWt+4(i-1)PFi+40-1) 
i=1 

5 

Z WWi+4(t- 1) 
t=l 

(6) 

This emulates the GAWS sampling procedure (General 
Aquatic Wildlife System; USFS, 1985) by sampling every 
fourth transect. Here, n = 5 and L• = 4 x (5 - 1) - 16 
widths. The second PA value used adjacent transects to pre- 
serve width and unit-to-unit persistence: 
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PA5TR = 

5 

Z WWiPFi 
i=1 

5 

Z WWi 
i=1 

(?) 

Again, n = 5 while L• = 4 widths. 
Based on observed autocorrelation [Myers, 1996], (6) should 

preserve properties of randomness, and (7) should preserve 
properties of autocorrelation of habitat units along a stream. 
These schemes were not optimum transect sampling methods 
because they lead to a high standard error about the mean 
[Myers, 1996]. Additional transects at the same spacings would 
preserve the same properties but decrease the scatter render- 
ing differences among distributions less obvious. 

We divided the 1000-unit simulated stream into 10 equal- 
length subreaches similar in length to the actual stream. Scat- 
ter of moments determined from the 10 subsamples varying 
more than for the actual streams would indicate shifts or trends 

due to simulation. Relative accuracy of the simulation of PA 
moments for each sampling scheme were compared using a 
sum of squared differences coefficient [Singh, 1988]. 

12 

SS = Z [Fobs(i) -- Yexp(i)]2 
i=1 

(8) 

The mean, standard deviation, or skewness coefficient of 
PAGAWS or PA5TR is represented by Y, and 12 is the num- 
ber of stream reaches compared. 

Distributions of PA from the actual streams were compared 
with the simulated using a Kolmogorov-Smirnoff goodness- 
of-fit test [Sokal and Rohlf, 1981]. This comparison tests the 
null hypothesis; H0, observed, and simulated PA values are 
described by the same distributions. H0 is rejected if the sig- 
nificance probability, p, is less than a chosen value for n equal 
to 100, the number of PA values chosen from the observed 
reach. The test statistic, D, is MAXIPp^(PA)-Sp^(PA)I or the 
maximum deviation between the distribution of the actual 

stream, P, and the simulated stream, S. We rejected H0 if D 
exceeded D 0. •. 

Simulation of Width 

Most mean widths range from 0.9 to 1.1 (Figure 5). As also 
reflected in the standard deviation (sd) (Figure 6), there is 
more scatter observed in the sampling scheme with one width 
spacing due to autocorrelation [Myers, 1996]. Observed widths 
scattered about the value 1 because the standardization was 

based on an average width from systematic transects [Myers, 
1996] which have random locations within a habitat unit. This 
suggested that measurement of width only at specific locations 
within a unit (upstream, middle, and downstream) biases the 
measurement when reported as an overall reach value. The 
scatter of average widths for the 10 simulated subreaches 
around 1.0 for all 12 reaches is very similar to the scatter of 
actual reaches and is within the range expected from previous 
sampling experiments [Myers, 1996]. This suggests the model 
reproduced width accurately both at the exact locations of 
simulation and at intermediate points. Skewness decreased 
with simulation due to smoothing (not shown). 

Simulated width sd did not always agree with observed as 
some reaches were over or underestimated (Figure 6). Big Den 
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Figure 5. Comparison of mean values of width for both sam- 
pling schemes. The expected value is 1. R* stands for reach 
number; see Table 1. 

U and Big Meadow (R5 and R6) simulations had an sd con- 
sistently less than observed. For example, observed widths on 
Big Meadow in excess of 3 occurred with a probability of 0.02, 
while the probability of simulating values in excess of 3 with the 
gamma distribution is much less (note that the gamma distri- 
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Figure 6. Comparison of sd values of width for both sam- 
pling schemes. R* stands for reach number; see Table 1. 
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Figure 7. Comparison of observed and simulated pool area 
means for each sampling scheme. R* is reach number; see 
Table 1 for description. 

bution did not describe widths for two pool locations on Big 
Meadow, Table 4). This caused a lower variation around the 
mean. 

The simulated width sd of the Reese River and Big Den D 
(R3 and R4, Figure 6) increased as sampled spacing increased 
from one to four widths and no longer agreed with those 
observed. Both had long pools and short spacings; therefore 
sampling at short spacings would have sampled the same unit 
several times, thereby limiting variability. Simulation was more 
variable at long spacings because different units were sampled, 
and the model does not preserve correlation among units. 
Autocorrelation due to short spacings within units decreased 
variability. 

Simulation of Pool Area 

Pool area ranges were as much as 0.22 (R8, Cabin U, Figure 
7), but most were less than 0.1 which is within expected scatter 
for these sampling methods [Myers, 1996]. PAGAWS sampling 
was more accurate for the mean value (SS = 0.0045 and 0.017 
for PAGAWS and PA5TR, respectively). 

Observed PA sd and skewness decreased substantially with 
increased spacing (Figures 8 and 9) because there is less au- 
tocorrelation of pools and width with longer spacing. There 
was a slight tendency to overestimate sd, mostly at a four-width 
spacing (Figure 8), which was less accurate than one-width 
spacing (SS = 0.0055 and 0.0022 for PAGAWS and PA5TR, 
respectively). Overestimation of sd ranged from 5 to 25% on 
five reaches (R2, R3, R4, R5, and R8). Four of the five have 
pool spacings that are multiples of four (Table 1). This indi- 
cates that the simulation has less scatter in the spacing, leading 
to a tendency for pools or nonpools to be repeated at multiples 
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Figure 8. Comparison of observed and simulated pool area 
sd for each sampling scheme. R * is reach number; see Table 1 
for description. 

of four transects. This leads to simulations of both high and low 
PAGAWS values. 

Simulated skew agreed closely with observed for both spac- 
ings (SS = 0.50 and 0.888 for PAGAWS and PA5TR, respec- 
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Figure 9. Comparison of observed and simulated pool area 
skew for each sampling scheme. R * is reach number; see Table 
1 for description. 
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Figure 11. Comparison of observed and simulated distribu- 
tions of pool area for each sampling scheme for Cabin U. 

tively). The only substantial overestimation was for PAGAWS 
on Smith U resulting from generation of high outliers. Ob- 
served values of PA on Smith U did not exceed 0.7, whereas 
the model simulated 10 values in the range (0.7, 1.0) (Figure 
10), which lead to the overestimation of skewness. However, 
even in a stream with few small pools, it is possible to sample 
PA = 1.0 with systematic pool and transect spacing. Distribu- 
tions from the modeled stream may be more realistic than the 
observed. 

Most simulated distributions agreed closely with observed 
(Table 5) reflecting the close agreement for all moments but 
especially the skew coefficient. The hypothesis, tested with 
Kolmogorov-Smirnoff tests, was often rejected due to disagree- 

Table 5. Comparison of Simulated and Observed PA 
Values Based on the Kolmogorov-Smirnov Test Statistic D 

Reach PA5TR D PAGAWS D 

Smith U 0.163' 0.099 

Smith D 0.090 0.151' 
Reese R 0.104 0.110 

Big Den D 0.037 0.053 
Big Den U 0.095 0.079 
Big Meadow 0.080 0.062 
Cabin D 0.063 0.076 
Cabin U 0.053 0.073 

Mahogany 0.073 0.071 
Summer Camp 0.143' 0.109 
Washington 0.057 0.095 
Willow 0.057 0.037 

PA5TR is pool area based on five transects spaced one transect 
apart; PAGAWS is pool area based on five transects spaced four 
transects apart. 

*D > D0. • = 0.122. 

ment in the tails of the distribution, which also leads to differ- 
ent skews. 

Although the equations for PA includes width, there were 
no similar tendencies among PA and width moments. The wide 
variability and lack of agreement of sd for width did not affect 
simulation of PA. As noted elsewhere [Myers, 1996], the posi- 
tioning of pools and riffles controls the moments of PA and not 
the differences in width. Two specific examples should help to 
clarify differences between observed and modeled. 

Specific Examples 

Smith U has an observed PA distribution with many values 
equalling 0 (Figure 10). There is a substantial difference be- 
tween the density for different spacings. Simulation repro- 
duced the general shapes very well but was not sensitive to 
some fluctuations which led to high-D values (Table 5). For 
PA5TR, for which D was significant, the model underesti- 
mated the fraction of zero values by 25% and overestimated 
the small (less than 0.2 of all observations) fractions in the 
range (0.2, 0.5) by about 75%. For PAGAWS the model un- 
derestimated only in (0.3, 0.4) by about 40%. 

Cabin U has a much different PA density (Figure 11) than 
Smith U (Figure 10). The fraction of observed 0 values de- 
creases from 0.2 to 0.05 from PA5TR to PAGAWS. The model 

simulates the observed uniform density in the range (0.3, 1.0) 
for one width spacing missing only the nadir at (0.5, 0.6) and 
spike at (0.6, 0.7). Random fluctuations such as this tend not to 
follow a probability distribution and are difficult to simulate. 
For PAGAWS the model follows the rise and fall within the 

range (0.2, 1.0). However, the model smoothes peaks and val- 
leys in that it underestimates the peak by about 35% and 
overestimates the large succeeding drop by about 80%. 
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Discussion 

Physical Interpretations 

An implicit result is acceptance of the hypothesis that pools 
on small Nevada rangeland streams locate randomly along 
stream reaches when formation is due to structural features in 

the stream. Thus nonpool length ranges from 0, which occurs 
when one pool spills into the next, to well above the mean 
value. Features which form pools, such as rocks, roots, or 
debris, enter the stream at random locations. If these are large 
enough to resist movement during high flows, they will force 
pools at the point of entry. If several successive forced pools 
were followed by longer nonpool reaches, clusters would exist. 
Histograms of pool spacing on a reach with clustered pools 
would be bimodal with one peak near 0 and the other peak at 
higher values, depending on the length of nonpool reaches. 
This was not manifest for the small streams studied here which 

confirms the random nature of pool formation on small 
streams. 

However, as streams become larger, annual flood flows in- 
crease [Klein, 1981], and features which enter the stream at 
random locations undergo sorting such that pool spacing be- 
comes regular. Abrahams et al. [1995], in a series of flume 
studies, found regularly spaced step pools to optimize energy 
dissipation as defined by a maximum Darcy-Weisbach friction 
factor when compared to random and suboptimum spacings. 
They compared these results to several actual streams and 
concluded that pool formation is optimum when the friction 
factor is maximum, as found with regularly spaced pools. Lisle 
[1986], working on a 12-m-wide stream in northern California, 
found that features, particularly root wads, large woody debris, 
and bedrock outcrops, controlled pool and bar locations. His 
figures suggest a regular spacing with at least two channel 
widths separating pools. Grant et al. [1990], on larger streams 
in the Pacific Northwest, found that spacing of pools was more 
regular on steep, high-energy reaches where particles repre- 
senting the 90th or larger percentile size fraction of bed ma- 
terial were sorted by observed flow with high variability due to 
large boulders and immovable bedrock. They also found that 
forced channel units formed during events with a return inter- 
val of about 50 years suggesting that low-frequency flows are 
necessary to cause a regular pool spacing. Viewing our results 
in light of these articles suggests that because of sorting of 
large substrate, there is an upper limit to the size of stream on 
which pools are randomly located. 

Regarding the Reese River, rejection of the hypothesis sug- 
gests that pools are not random, but neither are they clustered. 
Because the Reese River is a low-gradient, C-type or pool-riffle 
stream, the rejection suggests pools may not be random on this 
type of stream. However, Big Den D, Cabin 2, and Smith D are 
the same stream type, and they tended to have randomly 
spaced pools without substantial large forcing features. Big 
Den D is rapidly recovering from abusive grazing and has 
patchy, dense herbaceous vegetation on stabilizing sand bars 
that help to form pools. Cabin Creek has patchy clusters of 
shrubs controlling the bends and therefore has meander- 
formed pools. Smith D is a recently downcut stream with pools 
constrained to the locations of boulders that were preexisting 
in the alluvium through which the stream downcut. Because of 
their small size, bank vegetation, small-scale bank soil hetero- 
geneities, and boulders control their planform. Meander pat- 
terns are irregular; meander bends and the pools which form 
on them are located randomly. The much larger Reese R has 

regularly spaced pools with location primarily controlled by the 
tendency of streams to meander [Keller, 1971, 1972]. This sug- 
gests there is a stream size or flow rate threshold dividing 
streams with random and regularly spaced pools. It also sug- 
gests a subdivision of both the Rosgen [1994] C-type and Mont- 
gomery and Buffington [1993] pool-riffle classifications based on 
size. Heterogeneities control planform and pool locations on 
smaller streams. Natural meandering tendencies control plan- 
form and pool locations on larger, unconfined streams. On 
larger, confined streams, it is likely that features form pools but 
are sorted to a regular spacing. 

Because of the requirement that stream reaches be stochas- 
tically homogeneous, it is possible that a reach with clusters 
would never be observed. Because of an appearance of differ- 
ent reaches, surveyors would subdivide reaches according to 
pool clusters and the lack thereof. This raises the question of 
sampling scale. We [Myers, 1996] found that stochastic homo- 
geneity decreases after about 30 channel widths and recom- 
mended this as an upper limit for transect-based (equations (6) 
and (7)) pool area sampling. Frissel et al. [1986] found that the 
length of reach to be sampled depended on the desired result. 

We did not consider the role of pool-forming features and 
pool types on the distribution of length or spacing because of 
insufficient data. Additional research would assist in prediction 
and design of pool sequences if long homogeneous reaches can 
be found to calibrate models. Larger streams tend to be dom- 
inated by certain pool types [Grant et al., 1990; Montgomery et 
al., 1995], and it may be possible to calibrate models utilizing 
probability distributions conditioned on pool types on large 
streams. 

Sampling Analysis 

This model may be used for testing the sampling methods 
represented in (6) and (7) or in other methods. The parame- 
ters have physical significance and are readily observable on 
streams. Thus this model will allow the determination of the 

variance of any desired sampling scheme based on pool spacing 
and length. Sampling tests can be performed with this model 
without concern about inhomogeneities always present along 
actual streams. 

The precision of pool spacing measurements may also be 
considered with the model by examining the variation of the 
standard error (Spsp/g •/2) with the number of pool sequences 
measured. As the number of pool sequences increases, the 
standard error approaches 0. We simulated two synthetic 
streams, named A and B, with pool spacings of 3.5 and 7, 
respectively, to resemble spacings found commonly in the lit- 
erature [e.g., Keller and Melhorn, 1978; Grant et al., 1990; Mont- 
gomery et al., 1995]. We assumed A equal to 2.5 and 5.5 widths; 
therefore E (pool length) is 1 and 1.5 widths, respectively, for 
A and B. For the gamma distribution of pool length we as- 
sumed that a >/3 and that a/J3 i•esembled values from Table 3. 
We then simulated two artificial streams with 2000 habitat 

units (approximately 1000 pool sequences; the number of pools 
always exceeds the number of nonpools because some pools 
flow directly into another pool) and randomly chose 10 loca- 
tions within the synthetic reach to start measuring pool spac- 
ing. We subsampled successively longer reaches starting at 5 
pool sequences by adding 5 pool sequences to a maximum 
length of 500. 

Standard error at n -- 50 in B is twice that of A (Figure 12). 
Standard error decreases as n increases. Optimum reach 
length for stream survey is that at which additional precision of 



888 MYERS AND SWANSON: STOCHASTIC MODELING OF POOL-TO-POOL STRUCTURE 

a 

e6 

111:3 ....................................................................................................................................................................... 

0 • i • i • i • i • 

0 100 200 300 400 500 
Pool Sequences 

7 

-•5 

m 3 

'•2 

0 , 

o lOO 200 300 400 500 

Pool Sequences 

Figure 12. Standard error as a function of the number of 
pool sequences of a hypothetical stream with (a) 7 and (b) 3.5 
width spacings. 

a population moment estimate for additional measurements 
becomes much less. This corresponds to a point of substantially 
decreased slope on Figure 12. A breakpoint on the curves for 
A occurs at 35 pool sequences compared with 60 for B. With 35 
pool sequences measured, standard error on A is about 0.5 
widths. With 60 pool sequences measured, standard error on B 
is about 0.9 widths. This suggests 95% confidence limits of 
about 3-4 or 6-8, respectively. Because of the different spac- 
ings, the total length in widths required for optimum sampling 
length for B is much longer than A (420 compared to 122.5). 
Most studies in the literature, including those referenced 
above, sampled much shorter reach lengths. 

Standard error will vary with model parameters in a predict- 
able way. Assuming no correlation between pools and non- 
pools, as found by T. J. Myers and S. Swanson (Variability of 
pool characteristics with pool type and formative feature on 
small Great Basin rangeland streams, submitted to Journal of 
Hydrology, 1996), the variance of pool spacing, 

var(pool spacing) = var(RL) + var(PL) = ;t 2 + ,/32 (9) 

shows that variance increases as the length between pools 
increases but that it depends on the covariation of the pool 
length parameters. As a increases with/3 remaining the same, 
the gamma distribution becomes flatter and the variance in- 
creases. Increasing /3 increases the density in the right tail, 
which increases the variance according to the square of/3. Nine 
of 12 streams in this study had a/3 less than 1; therefore its 
impact on the variance was small. However, the other three 
streams, all pool-riffle types, tended to have longer pools. This 
suggests that pool-riffle streams, or streams with many long, 
low-gradient pools, have higher variance and require a longer 
reach to be sampled. 

Conclusion 

The stochastic model reproduced expected values of width 
and PA for two different sampling schemes accurately. On 

reaches for which the observed width (based on sampling de- 
scribed above; the actual is 1.0 because of the standardization) 
differed from 1, the simulation actually reproduced 1. Ob- 
served differences in sd were due to autocorrelation at one- 

width spacing, which sampled the same unit, and a possible 
slight correlation in the size of adjacent pools. Rounding by the 
model did not decrease skewness. In fact, the model produced 
occasional extremes not observed on actual streams but cer- 

tainly possible. Because PA ranges from 0 to 1, if a simulated 
reach is long enough, there will always be extremes not present 
on the original. This is only a error if density in the tails of the 
simulated PA distribution are physically unrealistic, which they 
are not. 

The main sources of error in this model are an inability to 
reproduce autocorrelation at short ranges, slight pool cyclicity 
on simulated but not on observed reaches, and a tendency to 
produce outliers not observed in the actual data. The errors 
are very small, however, and we conclude that the presented 
compound Poisson process model of pool spacing and size is 
accurate and applicable to small Nevada rangeland streams 
and, by extension, to similar streams elsewhere. 
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