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Abstract It is generally accepted that most plant popu-

lations are locally adapted. Yet, understanding how envi-

ronmental forces give rise to adaptive genetic variation is a

challenge in conservation genetics and crucial to the

preservation of species under rapidly changing climatic

conditions. Environmental variation, phylogeographic his-

tory, and population demographic processes all contribute

to spatially structured genetic variation, however few cur-

rent models attempt to separate these confounding effects.

To illustrate the benefits of using a spatially-explicit model

for identifying potentially adaptive loci, we compared

outlier locus detection methods with a recently-developed

landscape genetic approach. We analyzed 157 loci from

samples of the alpine herb Gentiana nivalis collected

across the European Alps. Principle coordinates of

neighbor matrices (PCNM), eigenvectors that quantify

multi-scale spatial variation present in a data set, were

incorporated into a landscape genetic approach relating

AFLP frequencies with 23 environmental variables. Four

major findings emerged. 1) Fifteen loci were significantly

correlated with at least one predictor variable (Radj
2 [ 0.5).

2) Models including PCNM variables identified eight more

potentially adaptive loci than models run without spatial

variables. 3) When compared to outlier detection methods,

the landscape genetic approach detected four of the same

loci plus 11 additional loci. 4) Temperature, precipitation,

and solar radiation were the three major environmental

factors driving potentially adaptive genetic variation in G.

nivalis. Techniques presented in this paper offer an effi-

cient method for identifying potentially adaptive genetic

variation and associated environmental forces of selection,

providing an important step forward for the conservation of

non-model species under global change.
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Introduction

An emerging field of research within landscape genetics is

the study of adaptive genetic variation in response to envi-

ronmental change (Holderegger and Wagner 2008; Manel

and Segelbacher 2009; Manel et al. 2010a; Schoville et al.

2012). Under rapidly changing climatic conditions, the

capacity of organisms to adapt is crucial to their persistence.

This is particularly important for sessile organisms, such as

plants, living at range margins or under extreme environ-

mental conditions (Crawford 2008). Arctic and alpine plants,

for example, are expected to be particularly sensitive to

environmental change (Walther et al. 2002; Thuiller 2007),

and many are already showing upward elevational shifts of

one to four meters per decade correlated with general

warming trends (Walther et al. 2002; Körner 2003). The

development of appropriate methods for identifying adap-

tive genetic variation in natural populations is essential to

advancing our understanding of species’ responses to global

change and for conserving the evolutionary potential of

natural populations (Allendorf et al. 2010; Manel et al.

2010b; Hansen et al. 2012).

Several genomic methods exist for identifying adap-

tively important genes and loci linked to genetic regions

under selection (e.g. gene expression profiling, candidate

gene association mapping, quantitative trait loci mapping).

These methods, however, have limited applicability in

natural populations where environmental heterogeneity and

population genetic structure resulting from demographic

history potentially confound the signature of selection

(Joost et al. 2007; Excoffier et al. 2009; see below). New

genetic approaches are currently being developed to

address these limitations and provide alternative method-

ologies for studying adaptive genetic variation in the field.

These approaches are particularly valuable for studying

non-model species for which little prior genomic knowl-

edge is available and for species whose timely conservation

management of genetic resources is imperative. With these

new techniques, landscape-level genetic data sampled

across natural ecological gradients can be analyzed in

conjunction with readily-available environmental data (e.g.

downloadable GIS climate layers) to detect genetic regions

of adaptive importance (Holderegger et al. 2008, 2010;

Manel et al. 2010a, 2012; Coop et al. 2010). This approach

is versatile and can be applied to any genetic data set for

which a large number of loci and allele frequency data are

available, including a wide variety of marker systems such

as single nucleotide polymorphism (SNPs) and microsat-

ellites (MSATs). Although SNPs are widely used to search

for genome-wide locus by environment associations in

model organisms (e.g. Fournier-Level et al. 2011), we

focus on the utility of amplified fragment length poly-

morphism (AFLP) markers, because they can easily be

applied to non-model organisms and used to generate

hundreds of loci potentially widely-distributed across the

genome (Meudt and Clarke 2007). AFLPs provide a quick

and low-cost means of obtaining allele frequency data for

large sample sizes and organisms for which little prior

genetic knowledge is available (Bensch and Åkesson 2005;

Poncet et al. 2010). Once allele frequency data has been

compiled, loci linked to genetic regions under selection can

be identified using one of the following two approaches: 1)

outlier locus detection or 2) landscape genetic allele dis-

tribution modeling.

In outlier locus detection, loci that demonstrate signifi-

cantly higher or lower among-population genetic differ-

entiation than expected under neutrality are identified as

outliers and are thus considered potentially under selection.

Of the large number of markers usually surveyed in this

method, less than 5 % are generally identified as outliers

(Hoffmann and Willi 2008). Outlier locus detection is a

population-level analysis that relies on estimates of popu-

lation genetic differentiation (e.g., FST) and is thus poten-

tially sensitive to departures from Hardy–Weinberg

equilibrium (HWE) common in many natural populations

that violate assumptions in the designation of neutral

population genetic structure (Excoffier et al. 2009). This

problem increases when we attempt to define clusters by

minimizing HWE for populations that are not well differ-

entiated. In fact in most of cases, natural populations are

very difficult to define (Waples and Gaggiotti 2006).

Additionally, selection caused by factors that vary on

spatial scales smaller than that of population designation,

may not be detectable with population-based methods.

Finally, outlier locus detection provides no direct connec-

tion between genetic and environmental data; environ-

mental factors are not used to identify outlier loci, although

correlations with selected loci can be assessed post hoc

(Storz 2005; Holderegger et al. 2008).

Alternatively, a landscape genetic approach can be used

to detect potentially adaptive loci by directly correlating

allele frequencies with environmental variation (Joost et al.

2007; Schmidt et al. 2008; Holderegger et al. 2010). This

approach assumes that clinal variation in the environment

produces measureable changes in allele frequencies in or

near genomic regions under selection (Endler 1977; Hirao

and Kudo 2004; Ingvarsson et al. 2006; Schmidt et al.

2008; Manel et al. 2010a). It has the advantage of being

able to identify both markers potentially linked to genes

under selection as well as the environmental factors driving
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selection. As high-throughput technology increases the

amount of genetic data to be analyzed, the calculation time

it takes to process very large data sets using outlier locus

detection methods may become an obstacle to users,

necessitating alternative approaches. In contrast, the land-

scape genetic approach is able to process large amounts of

data very rapidly. By explicitly including spatial and

environmental variables when identifying loci under

selection, allele distribution models are typically able to

identify a larger percentage of potentially adaptive loci

than outlier locus detection methods (e.g. Parisod and Joost

2010; Poncet et al. 2010, Manel et al. 2010b). Incorpora-

tion of additional environmental information allows the

landscape genetic approach to retrieve loci that lie just

outside the upper or lower limits of the neutral distribution

and identified as false negatives by outlier locus detection

methods. Use of both outlier locus detection and landscape

genetic approaches together will complement and

strengthen robustness of the final set of loci identified as

potentially under selection. A direct comparison of these

approaches, however, has as yet not been addressed.

Regardless of the approach used to identify loci under

selection, it is often difficult to disentangle correlations

between identified loci and environmental factors from

correlations with other spatially structured processes (Ma-

nel et al. 2010a). Spatially structured genetic variation can

arise as a result of three major processes. 1) Induced spatial

dependence of genetic variation arises when species

respond to spatially structured external variables, such as

environmental clines in temperature or moisture. 2) Spatial

autocorrelation is generated by species themselves, through

demographic processes such as restricted mating, limited

dispersal, and interspecific interactions (Borcard et al.

2011). 3) Lastly, the historical signature of broad-scale,

phylogeographic structuring patterns associated with gla-

cial refugia and migration routes can give rise to spatially

structured patterns of genetic variation (Dray et al. 2006;

Jombart et al. 2009). Understanding species’ genetic

adaptations to changing environmental conditions requires

separating the signature of environmental forces of selec-

tion from both spatial autocorrelation and broad-scale

phylogeographic structuring that results from neutral

genetic processes. Spatial autocorrelation, whereby obser-

vations exhibit a greater or lesser degree of correlation with

geographic location than expected under a neutral distri-

bution, violates assumptions of error structure in a given

dataset, resulting in high rates of Type I error (Wagner and

Fortin 2005; Dray et al. 2006). Left unaddressed, spatially

structured environmental heterogeneity introduces statisti-

cal concerns when comparing replicate samples across the

landscape (Wagner and Fortin 2005). Consequently, when

analyzing locus by environment associations, models that

explicitly account for the spatial component of variation

inherent in environmental datasets are needed (e.g., par-

tialling out the spatial component from residual variation,

adding a spatial error term in regression analysis) (Wagner

and Fortin 2005).

Principle coordinates of neighbor matrices (PCNM) is a

method that allows partitioning out of the spatial compo-

nent intrinsic to ecological datasets (Borcard and Legendre

2002). PCNM is a special form of Moran’s eigenvector

maps (MEM); both utilize Moran’s index of spatial auto-

correlation (Moran’s I) to characterize pairwise spatial

relationships among sampling locations (Dray et al. 2006).

While MEM quantifies both negative and positive auto-

correlation, PCNM only measures the latter. Negative

autocorrelation tends to capture very small-scale local

demographic processes; excluding negative eigenvectors,

PCNM and MEM converge (Dray et al. 2006; Dray pers

comm). As we were primarily interested in the influence of

broad-scale environmental forces of selection on patterns

of genetic variation in this study, we focused on PCNM.

Collectively, PCNM eigenvectors describe a continuum of

variation across all scales that can be ascertained by a

studies’ sampling design. They allow one to account for the

spatial structure present in a given dataset that is due to

spatially autocorrelated environmental and demographic

patterns, without those variables having to be directly

measured or identified. PCNM eigenvectors can be used as

spatial predictors, e.g., in multiple regression (Dray et al.

2006). Quantifying this unmeasured spatial variation

allows researchers to salvage information from residual

variation, thereby reducing model error and increasing the

likelihood of discovering ecologically-meaningful rela-

tionships (Borcard et al.1992; Borcard and Legendre 2002).

Broad-scale PCNM eigenvectors are thought to represent

the spatial structure inherent in climatic gradients, such as

temperature or precipitation, while smaller-scale PCNM

eigenvectors correspond to intermediate- to small-scale

biotic processes, such as dispersal and competition (Wag-

ner and Fortin 2005; Jombart et al. 2009).

Over the last two decades, PCNM has been utilized as a

surrogate for spatial variation in analysis of a wide variety

of ecological patterns, including spruce budworm (Chori-

stoneura spp.) defoliation (Bellier et al. 2007), hotspots of

plant community diversity (Gibson et al. 2010), and

intertidal metacommunity structure (Okuda et al. 2010).

Incorporation of PCNM as explanatory variables in

regression analysis has, however, only very recently been

applied in a genetic context for the identification of loci

under selection (Manel et al. 2010b). Allele distribution

models that include broad-scale PCNM variables offer a

promising new tool that requires further exploration

(Holderegger et al. 2010).

We apply these methods to a data set of the arctic-alpine

species Gentiana nivalis, using AFLP allele frequencies
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analyzed from samples collected throughout the European

Alps (Gugerli et al. 2008). In this study, we aim to val-

idate and gain a deeper understanding of the landscape

genetic method recently proposed by Manel et al. (2010b)

by addressing the following three main goals. 1) Identify

loci exhibiting potentially adaptive patterns of genetic

variation by applying multiple linear regression analysis

and testing for correlations between allele frequencies and

environmental variables, PCNM variables, and population

genetic history. 2) Identify major environmental factors

potentially driving local adaptive genetic variation in G.

nivalis at each locus identified in part 1. 3) Compare

results from this landscape genetic approach with two

outlier locus detection methods to corroborate results and

demonstrate the effectiveness of accounting for unmea-

sured environmental variation when identifying adaptive

genetic variation.

Materials and methods

Study species

Gentiana nivalis L. (alpine gentian; Gentianaceae) is a

widespread, herbaceous annual plant distributed across

arctic and alpine regions of Europe’s major mountain

ranges, including the Alps, as well as more northern lati-

tudes in Greenland, Scandinavia, and Iceland (Hultén and

Fries 1986). Gentiana nivalis typically grows under cool,

moist conditions, such as those typical of mountain

meadows, pastures, heaths, fens, and bogs (Hegi 1957;

Kozuharova and Anchev 2006). Soils are commonly

characterized as meager, rocky, and usually calcareous

(Hess et al. 1972). Flowering occurs from June through

September (Aeschimann et al. 2004). The small, blue

flowers of G. nivalis are self-compatible (Kozuharova and

Anchev 2002) and produce numerous, lightweight seeds

that can be transported by wind over long distances (Hegi

1957).

Study area, genetic data, and population structure

We utilized a data set of G. nivalis generated from the

IntraBioDiv project (Gugerli et al. 2008). In an effort to

support large-scale conservation planning, this interna-

tional, interdisciplinary research collaborative compiled

genetic data sets for 45 herbaceous species (Gugerli et al.

2008; Taberlet et al. 2012). As part of this project, leaf

samples of G. nivalis were collected within a regular grid

system (resolution of 22.3 9 25 km) across the European

Alps (covering an area [200,000 km2) in 2004 (Fig. 1).

Within every second cell of the sampling grid, one location

was selected; along a transect established at this location,

leaves of three G. nivalis individuals were collected, with

individuals sampled at 10 m intervals (for further details on

sampling see Gugerli et al. 2008). The current study

includes 218 individuals sampled from 74 locations.

Alvarez et al. (2009) successfully genotyped these samples

at 157 polymorphic AFLP loci and found reproducibility of

genotypes was greater than 95 %.

Demographic history, as reflected in population genetic

structure, can be a dominant factor shaping allele fre-

quencies, and numerous methods for identifying genetic

signatures of selection have been shown to be sensitive to

this influence (Nielsen 2005, Excoffier et al. 2009). To

control for the confounding effects of population genetic

history when identifying potential signatures of selection

(Nielsen 2005; Joost et al. 2007), we used a Bayesian

clustering method implemented in STRUCTURE 2.3.3 to

analyze population structure of the G. nivalis data set and

ascertain if the sampled individuals grouped into distinct

genetic lineages (Pritchard et al. 2000, Falush et al. 2007).

Assuming admixture and an independent alleles model, we

determined the most plausible number of populations

(K = 1–10, five runs for each K) and with what probability

each individual could be assigned to each cluster (200,000

generation burn-in period followed by 1,000,000 Monte

Carlo Markov chain (MCMC) generations). Following

methods outlined in the STRUCTURE manual, we found

the strongest support for a model of K = four ancestral

populations (mean posterior -log likelihood = -8641.5)

(Falush et al. 2007), and subsequently removed all indi-

viduals with probability of population membership \0.75

from further analyses (Table 1). To ensure that we identi-

fied true correlations between loci and environmental fac-

tors and not spurious relationships due to spatially

structured patterns of demographic history, we included

cluster membership as a covariate in later regression

analyses. While admixed individuals likely harbor impor-

tant information, they also introduce an added source of

uncertainty, increasing model variance and reducing our

ability to test the robustness of the landscape genetic model

to population history. We chose a moderate threshold of

[0.75 so as to exclude highly admixed samples, while also

retaining valuable genetic information that would be lost

with a very high threshold (e.g., 0.99 as is commonly used

for assignment tests) (Manel et al. 2002).This resulted in a

final data set of 199 individuals; 88 % of these individuals

(176 out of 199) exhibited[0.9 probability of belonging to

a given population. Figure 1 illustrates the geographic

distribution of the four populations.

We analyzed pairwise population differentiation among

the four genetic clusters with phi-statistics, analogues of

Wright’s F-statistics for binary data. Analysis of molecular

variance (AMOVA) was conducted in GenAlEx 6.4 using

9,999 permutations (Peakall and Smouse 2006).
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Environmental and spatial variables

We used 200 m resolution climate data interpolated from

records collected daily at 977 climate stations located

throughout the Alps (see Gugerli et al. 2008 for details).

Table 1 provides an overview of the environmental vari-

ables used in this study. Following the methods of Manel

et al. (2010b), 14 environmental variables related to tem-

perature, precipitation, and topography were extracted

from published GIS eco-climatic layers (Gugerli et al.

2008).

Next, we applied a principal component analysis (PCA)

to identify highly correlated variables, defined in this study

as those variables with |r| [ 0.8 and ecologically related.

Including all 14 original environmental variables, the first

two axes of the PCA explained 84.1 % of the variation in

environmental predictors across our study area

(PC1 = 69.1 %; PC2 = 15 %). Of these, we retained eight

final variables that were both uncorrelated and were the

most biologically relevant for explaining local adaptation

of G. nivalis. These environmental variables were then

utilized to identify potentially adaptive loci and to deter-

mine the selective forces likely operating on each locus.

Variables retained included: radiation, spring precipita-

tion, summer precipitation, mean annual minimum tem-

perature, slope, aspect, topography, and potential soil

humidity.

To account for non-linear relationships between AFLP

allele frequencies and these environmental factors, we

transformed uncorrelated environmental variables into

cubic polynomials (Legendre and Legendre 1998; Manel

et al. 2010b), while aspect was converted to its sin and cos

for use in linear models. These transformations resulted in

a total of 23 untransformed and transformed environmental

explanatory variables for use in identifying potentially

adaptive loci.

To quantify unmeasured spatial variation and create

spatial predictors for inclusion in multiple linear regres-

sion, we computed PCNM from the geographic coordinates

of sample locations using R packages ‘‘AEM’’ (Stéphane

Dray) and ‘‘PCNM’’ (Pierre Legendre) (available at

https://r-forge.r-project.org/R/?group_id=195). First, a

spatial weighting matrix W was calculated from pairwise

Euclidean distances measured among geographic coordi-

nates of sampling locations. PCNM eigenvectors were then

produced based on this weighting matrix. All PCNM

Fig. 1 Sampling locations of Gentiana nivalis across the European Alps. Genetic clusters identified by STRUCTURE show strong geographic

differentiation, suggesting distinct phylogeographic history
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eigenvectors are orthogonal and uncorrelated with each

other, indicating that each eigenvector represents a differ-

ent spatial scale of ecological variation. We used the first

half of this matrix (nine PCNM eigenvectors) as a surro-

gate for broad-scale environmental variation (e.g., tem-

perature and precipitation gradients).

Detecting potentially adaptive loci using regression

analyses

To address our first goal of detecting potentially adaptive

loci in G. nivalis, we used multiple linear regression

analysis to identify loci whose allele frequencies were

correlated with the 23 explanatory environmental variables

and nine broad-scale PCNM variables defined above. (i)

First, using a multiple linear model, we regressed allele

frequencies at the 70 sampling locations for each AFLP

locus on the 23 environmental variables alone. (ii) Next,

we ran a model including all environmental variables plus

the nine broad-scale PCNM variables to test whether more

loci were identified as potentially under selection by

accounting for spatial variation in the model. (iii) Finally,

we ran both of the above regression models again, adding a

predictor variable for population membership as identified

in STRUCTURE analysis (see above) to test if phylogeo-

graphic history had a significant influence on identification

of potentially adaptive variation. To consider loci for fur-

ther exploration, we required that a locus be significantly

correlated to at least one explanatory variable and also

required that environmental predictors explained at least

50 % of the genetic variation at that locus (as indicated by

Ohtani’s (2000) unbiased estimator R2
adj; Manel et al.

2010b). We also employed a null model to explore how

many significant positive correlations the regression model

identified simply due to chance. By randomly shuffling

genotypes with respect to sample identity and associated

explanatory variables, and then running the regression

model on the randomly shuffled dataset, we identified an

expected percentage of positive spurious correlations.

After identifying those loci for which environmental

predictors explained at least 50 % of the genetic variation,

Table 2 Phi-statistics revealed significant pairwise population dif-

ferentiation among all four of the genetic clusters identified from

STRUCTURE

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.003 0.001 0.000

Cluster 2 0.098 0.000 0.000

Cluster 3 0.156 0.041 0.000

Cluster 4 0.232 0.138 0.113

UPT values are presented below the diagonal, and accompanying

probabilities based on 9,999 permutations are shown above the

diagonal

Table 1 We used the topo-climatic variables included in Table 1 to identify AFLP loci under selection in Gentiana nivalis (following the

methods of Manel et al. 2010b)

Description Abbreviation

Topography Altitude alt

Slope (%)a slope

Aspectb aspect

Topography (integrated topographic exposure map)a topo

Soil (potential soil humidity)a soil

Seasonal climate layersc Spring seasonal precipitation (number of rain days from March–May)a spr_prcp

Summer seasonal precipitation (number of rain days from June–August)a sum_prcp

Yearly climate layersc Annual degree days above 0 �C (�C 9 days)d ddeg

Mean annual precipitation sum (cm) prcpavgy

Radiation (annual mean of daily global radiation; kJ/m2/day)a, e srad

Number of days with maximum temperature below freezing tmaxavgiy

Maximum average temperature (mean annual maximum temp; �C) tmax

Number of days with minimum temperature below freezing tminavgty

Minimum average temperature (mean annual minimum temp; �C)a tmin

Eight variables were retained for use in final analyses (along with their transformations); these are indicated in bold
a First, second, and third order polynomials included for these variables
b sin and cos transformed
c Period 1980–1989
d Calculated from daily climate maps
e Horizon-terrain-corrected
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we examined which particular environmental variables were

correlated with allele frequencies at each of the potentially

adaptive loci. For each locus exhibiting a potential signature

of selection, we applied an inferential approach to determine

the best model and relative contribution of each variable.

Akaike information criterion (AIC) was utilized to weight

each explanatory variable and for model selection and

averaging (Burnham and Anderson 2002). Analyses were

conducted using the R package ‘‘MuMIn’’ (Kamil Bartoń,

available at http://mumin.r-forge.r-project.org/). We ran

candidate models, including all possible combinations of the

23 environmental variables and nine broad-scale PCNM

variables, with a penalization parameter (k = 2) for addition

of model parameters. We used AICc to correct for small

sample sizes (Burnham and Anderson 2004) and considered

models with DAIC values B2 as equally well supported.

Analyses were conducted with R version 2.10.1 (R Foun-

dation for Statistical Computing, Vienna, Austria; R

Development Core Team (2008/2009)).

Redundancy analysis

We then used redundancy analysis (RDA) to investigate the

multivariate relationship between explanatory variables and

allele frequencies at potentially adaptive loci in ordination

space. RDA allowed us to visualize the ecological patterns

represented by broad-scale PCNM variables in this study

(Borcard et al. 2011). To test for collinearity among the 23

environmental variables and nine broad-scale PCNM vari-

ables, we calculated variance inflation factors (VIF) and

removed any variables with VIFs [20 (denoting highly

correlated canonical coefficients) (Borcard et al. 2011). We

included the remaining PCNM eigenvectors in a co-variable

matrix to investigate the effect of broad-scale spatial and

environmental patterns on genetic variation after partition-

ing out the effect of small-scale demographic patterns. We

applied ‘type 2’ scaling to preserve correlations among loci

(Borcard et al. 2011). VIF and RDA were conducted with

the R package ‘rda.Test’, version 1.2 (Legendre; available

at http://www.bio.umontreal.ca/legendre/).

Outlier locus detection

To compare results from the landscape genetic approach

with the broadly applied method of outlier locus detection,

we conducted outlier tests among the genetic clusters

identified from the STRUCTURE analysis. The basic pre-

mise of this approach is that loci under selection should

exhibit levels of population differentiation (FST) that fall

outside of the range of FST values for neutral loci. Due to

the small sample size (n = 7) of one cluster, outlier locus

detection tests were only carried out between three of the

four genetic clusters (each containing between 58 and 70

individuals).

We applied two commonly used outlier locus detection

methods, namely BAYESCAN and DFDIST. First,

BAYESCAN utilizes the Bayesian model of Beaumont and

Balding (2004), decomposing FST into locus- and popula-

tion-specific components (Foll and Gaggiotti 2008). Using

a reversible jump MCMC algorithm, BAYESCAN com-

putes the posterior probability of a selection-based model

versus a neutral model of differentiation for each locus. We

conducted multiple runs, varying the prior odds (from 10:1

odds to even 1:1 odds) in favour of a neutral model. For

each set of priors, we ran 20 short pilot runs followed by

100,000 iterations with a 50,000 burn-in.

DFDIST, as implemented in the program MCHEZA

(Antao and Beaumont 2011), is an extension of Beaumont

and Nichols’ (1996) FDIST model, which allows for the

use of dominant markers. The neutral distribution was

modeled based on 500,000 data points generated through

coalescent simulations under a symmetric island model.

This model was parameterized with an estimate of neutral

differentiation obtained from the observed data (after

removing non-neutral loci) and corrected for the small

number of populations. Based on these parameters, the

simulated neutral distribution was then used to identify

loci exhibiting unusually high or low levels of

differentiation.

To avoid spurious findings, we excluded loci where

global frequency of the minor allele was \0.05 across all

individuals, as recommended in the BAYESCAN manual.

For each parameter setting, we conducted three indepen-

dent runs with each program to ensure convergence of

results and corrected for multiple testing by setting a false

discovery rate FDR \ 0.1 (Benjamini and Hochberg 1995).

Results

Population genetic differentiation

Phi-statistics (APT) revealed significant pairwise differen-

tiation among all four of the genetic clusters identified by

STRUCTURE (see Table 2). We found that levels of APT

were low to moderate (ranging from 0.098 to 0.232,

p \ 0.003) as would be expected from G. nivalis’s life

history characteristics (e.g., wide-spread distribution, long-

distance wind dispersal).

Detecting potentially adaptive loci using regression

analyses

The first regression model (i) including only environmental

variables found seven (4.5 %) of the 157 loci tested were
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identified as potentially under selection (those with

R2
adj C 50 %; Table 3). The second regression model (ii)

including all environmental variables and the nine broad-

scale PCNM variables detected an additional eight loci (15

of the 157 loci (9.6 %); Fig. 2; Table 3). Finally (iii) when

both of the above regression models were run with the

addition of a predictor variable representing membership to

one of the four genetic clusters identified by STRUC-

TURE, we found no effect of population genetic structure

on the identification of potentially adaptive loci. However,

we note that using the same genetic data to estimate both

population genetic structure and detection of loci intro-

duces a multiple testing bias. Lastly, results from the null

model indicate that, on average, 2 % of loci were found to

be significantly correlated with environmental variables

simply due to chance.

To identify the environmental and PCNM variables

correlated with each selected locus, we applied AICC

inferential model selection. The relative importance of

predictor variables for explaining genetic variation at each

locus as well as across all selected loci are presented in

Table 4. Among the environmental variables, average

minimum temperature, solar radiation, and spring and

summer precipitation were most strongly associated with

potentially adaptive loci.

Redundancy analysis

VIF results indicated very low collinearity among all 23

environmental variables and nine broad-scale PCNM

variables (mean = 2.8, SD = 2.0). From RDA results,

environmental and broad-scale PCNM variables together

explained 77 % of the variation in allele frequencies at

potentially adaptive loci. Intermediate to small-scale

PCNM eigenvectors, however, accounted for 0 % of the

variance, indicating that population demographic processes

did not have a significant influence on the variation within

our matrix of selected AFLP loci (canonical R2 = 0.77).

Online Resource 1 shows the relationships between allele

frequencies at selected loci and spatial and environmental

variables. Note that the first principal coordinate (PCNM1)

appears to be highly correlated with three selected loci,

suggesting potential adaptation to a common, unidentified

environmental factor.

Outlier locus detection

Using the conservative prior odds of 10:1 in favor of the

neutral model, BAYESCAN identified no significant out-

lier loci among the three STRUCTURE groups. For all

loci, the posterior probability of being under selection was

Table 3 We summarized

AFLP loci identified as

potentially adaptive for

Gentiana nivalis using both a

landscape genetic approach and

outlier locus detection

approaches

Loci identified by both multiple

linear regression and DFDIST

are indicated in bold

MLR multiple linear regression,

PCNM principle coordinates of

neighbor matrices
a, b Loci demonstrating [95 %

probability for balancing

selection and diversifying

selection, respectively; after

controlling for FDR \ 0.1,

these outlier loci were no longer

significant

Selected loci Allele distribution method FST outlier detection method

MLR MLR incl. PCNMs DFDIST BAYESCAN

ACT_CAC_103.1 x x xb xb

ACT_CAC_218.4 xa

ACT_CAC_320.8 xa

ATC_CAC_100.0 x x

ATC_CAC_144.5 x

ATC_CAC_151.7 x xb

ATC_CAC_177.8 xa

ATC_CAC_221.4 x x

ATC_CAC_225.9 x x xb

ATC_CAC_300.0 x x

ATC_CAC_302.0 x x

ATC_CAC_362.7 x

ATG_CTG_71.3 x x xb

ATG_CTG_113.4 x

ATG_CTG_140.8 xb

ATG_CTG_199.5 x

ATG_CTG_200.8 x

ATG_CTG_236.7 x

ATG_CTG_458.8 xa

ATG_CTG_489.1 x

Total 7 15 9 1
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less than 0.16. When the analysis was run with even prior

odds for both models (1:1), meaning that every locus was

as likely to be under selection as neutral, a single locus

(ACT_CAC_103.1; Table 3) showed a posterior probabil-

ity = 0.79 for divergent selection, indicating substantial

evidence according to Jeffreys’ scale (Jeffreys 1961).

Although this result was no longer significant after con-

trolling for false discovery rate, locus ACT_CAC_103.1

was also identified as potentially adaptive in the above

landscape genetic approach.

Using DFDIST, the same locus (ACT_CAC_103.1),

along with four others showed high probability ([95 %)

for divergent selection among the three STRUCTURE

groups (Table 3). Four of these five loci under divergent

selection were also identified in the landscape genetic

approach above (Table 3). This analysis also indicated four

loci with a high probability ([95 %) for balancing selec-

tion (data not presented here). Again, after controlling for

FDR, none of the outlier loci detected by DFDIST

remained significant. Results for both BAYESCAN and

DFDIST are presented in Fig. 3.

Discussion

This study applied the landscape genetic approach pro-

posed by Manel et al. (2010b) to an AFLP dataset devel-

oped for the alpine plant Gentiana nivalis (Gugerli

et al. 2008; Alvarez et al. 2009), identifying potential loci

under selection by correlating allele frequencies with

environmental data and broad-scale PCNM variables.

Incorporation of PCNM variables allowed us to model the

influence of spatially-structured environmental variation on

this data set. We also applied powerful AICc model

selection to determine the relationship between environ-

mental variables and selected loci. From this analysis, we

identified 15 loci of potential adaptive relevance, which

were primarily correlated with temperature, solar radiation,

and precipitation as well as with broad-scale PCNM vari-

ables. Four of these same loci were also identified as being

under divergent selection using outlier locus detection

analysis.

Incorporation of PCNM and genetic structure

into a landscape genetic approach to detect potentially

adaptive loci

PCNM analysis identified nine broad-scale PCNM vari-

ables, representing large-scale, unmeasured, spatio-envi-

ronmental variation across our study area of the European

Alps. In fact, the spatial variation quantified by the PCNM

eigenvectors was the most important factor influencing

allele frequency distribution in G. nivalis (Table 4). The

significant correlation of PCNM variables with all loci

identified as potentially adaptive in the landscape genetic

approach suggests that additional unmeasured, broad-scale

environmental factors are influencing potentially adaptive

genetic variation in G. nivalis. To gain a better under-

standing of the factors driving adaptation, future research is

needed to identify what environmental patterns the

unmeasured variation represents. Yet, even with unlimited

resources, the complexity of natural ecosystems makes it

unlikely that researchers will be able to identify and

measure all dimensions of environmental variation influ-

encing adaptation of species. This emphasizes the value of

the PCNM approach, as it enables the identification of loci

significantly correlated to spatio-environmental gradients

even if we have not measured the causative environmental

factor. Including PCNM in a landscape genetic approach

allows for a more realistic assessment of the proportion of

the genome affected by selection and a better understand-

ing of the specific dynamics of potentially adaptive varia-

tion across spatial scales.

To test for the potentially confounding effect of popu-

lation genetic history on detecting loci under selection, we

included a predictor variable for population membership to

one of the four genetic clusters defined from STRUCTURE

analysis. Alvarez et al. (2009, 2012) also found that G.

nivalis clustered into four populations across the European

Alps and Carpathians, and they suggest that these four

well-defined clades likely correspond to four distinct gla-

cial refugia. Although we found very strong and geo-

graphically distinct neutral genetic structure in this study

Fig. 2 Frequency of R2
adj values from multiple linear regression of

Gentiana nivalis AFLP allele frequencies at 157 loci associated with

23 environmental and nine broad-scale PCNM variables
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(Fig. 1), with 88 % of individuals showing[90 % inferred

ancestry to one of the four populations, our regression

analysis indicated that detection of potentially adaptive loci

was robust to the influence of demographic history.

Redundancy analysis results similarly suggest that

small-scale processes have little, if any, influence on

potentially adaptive genetic variation at selected loci.

Finding no effect of small-scale PCNM eigenvectors on

genetic variation supports our decision to include only the

first half (nine) of broad-scale PCNM eigenvectors in

identifying loci correlated with environmental gradients.

Identifying environmental variables affecting

potentially adaptive loci

Temperature, precipitation, and solar radiation appeared to

be the environmental variables most strongly influencing

(i.e. affecting the largest number of loci) allele frequencies

at selected loci, after incorporating PCNM variables and

thus modelling unmeasured spatial variation. Additionally,

of the potentially adaptive loci, several demonstrated

associations with second and third order polynomial

transformations of environmental predictors, suggesting

that it is important to consider non-linear relationships in

studying the complexity of adaptive responses to environ-

mental clines. In these respects, our results are in agree-

ment with those recently reported for numerous other plant

species also collected under the IntraBioDiv Consortium

and analyzed using the landscape genetic approach pre-

sented in this paper (Manel et al. 2010b, 2012). Applying

another approach, generalized estimating equations, Poncet

et al. (2010) also found non-linear relationships to be

important. These studies found temperature and precipita-

tion to be the major environmental variables driving the

distribution of allele frequencies at potentially adaptive loci

in alpine species. Consistent with these findings, results

from G. nivalis support the conclusion that specific envi-

ronmental factors act as general selective forces on groups

of species distributed across the same landscape. AICC

analysis identified additional strong associations between

several loci and other environmental variables in G. nivalis,

including solar radiation, topography, and soil humidity.

Thus, while some variables are consistently identified as

strongly influencing alpine species across the European

Alps, unique selective forces appear to be affecting

potentially adaptive genetic variation in G. nivalis as

compared to other alpine species, suggesting species-spe-

cific adaptive response to a common habitat.

Comparing a landscape genetic approach with outlier

locus detection

In agreement with the conclusions of Manel et al. (2010b),

our research indicates that using PCNM variables in allele

distribution models has the capacity to identify more

potentially adaptive loci than traditional outlier locus

detection methods in natural populations. By directly

comparing these two methods, we aimed to investigate

whether the traditional outlier locus detection approach

could be used to provide supporting evidence for loci

identified as potentially adaptive via the recently developed

landscape genetic approach. Using outlier detection meth-

ods, we found only weak evidence for a small number of

selected loci, and results were not significant after cor-

recting for multiple testing. Despite weak support, we did,

however, find some consistency across methodologies,

with both analyses identifying four of the same loci as

candidates for divergent selection. Although these methods

were based on very different assumptions, corroboration

across methods provides compelling support for the

hypothesis that these loci are of adaptive relevance and

warrant further exploration. In addition to the four loci

identified by both methods, the landscape genetic approach

Fig. 3 Results from outlier locus detection methods. a Output from

DFDIST shows the FST of each locus plotted against its heterozy-

gosity. Lines illustrate the 0.025 and 0.975 quantiles of the neutral

distribution simulated under the island model. b Output from

BAYESCAN shows the FST of each locus plotted against the

posterior odds for a model including selection (based on even prior

odds 1:1). The vertical bar illustrates the threshold for substantial

evidence of selection according to Jeffreys’ scale
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was able to identify 11 more loci associated with envi-

ronmental variation.

It is important to note that direct comparison of these

methods can be misleading, and methodological issues do

exist (Manel et al. 2009). First, outlier locus detection

methods rely on a specific evolutionary and demographic

hypothesis, while the landscape genetic approach makes a

simple assumption that clinal gradients in environmental

variables can result in gradual changes in allele frequencies

(Schmidt et al. 2008). Second, outlier locus detection

methods utilize allele frequency estimates from randomly

sampled individuals within a priori genetically-defined

populations and are thus not ideally suited for the analysis

of samples continuously distributed across the landscape,

such as would be the case for many widespread and

common organisms (Manel et al. 2010b). Third, outlier

detection methods are unable to directly incorporate spatial

and environmental information. As a result, the inherent

variation of natural systems adds to residual noise, making

it less likely that significant genetic variation is detected.

Indeed, these limitations were motivating factors in the

development of landscape genetic approaches.

Conclusions and conservation perspectives

Identifying environmental heterogeneity associated with

adaptive genetic variation is of great value in assisting the

development of conservation plans for managing species’

evolutionary potential. By including PCNM spatial vari-

ables, we showed that the landscape genetic approach

presented in this paper was able to detect more than twice

the number of potentially adaptive loci when compared

with commonly used non-spatial methods for the same G.

nivalis data set. Inclusion of PCNM variables enabled

retrieval of residual variation that remained as model error

in outlier locus detection methods, thereby allowing us to

take advantage of information that was not utilized in the

latter case. Additional benefits of the spatially-explicit

landscape genetic approach include the ability to directly

incorporate spatial and environmental information when

identifying potentially adaptive loci as opposed to associ-

ating environmental patterns post hoc, as well as the ability

to identify likely causal agents of selection. The ability to

identify such relationships is increasingly valuable as

organisms respond to accelerating changes in local and

regional climatic conditions. More importantly than

increasing the number of potentially adaptive loci identi-

fied, the landscape genetic approach also allowed us to

determine potential causal agents of selection in associated

environmental variation.

Identifying the ecological and evolutionary limits to

species’ ranges remains one of the largest gaps in our

understanding of evolutionary biology (Eckert et al. 2008),

restricting our capacity to provide for the long-term pres-

ervation of species (but see Jay et al. 2012). By identifying

environmental factors associated with potentially adaptive

genetic variation, this method allowed us to better under-

stand what forces constrain the distribution of G. nivalis

and determine conditions essential for its growth and sur-

vival. This approach can be used to generate hypotheses

regarding functional mechanisms operating at potentially

adaptive loci. Hypotheses can then be tested through a

combination of (i) sequencing and (ii) common garden

studies to determine if genetic variation at these loci is

indeed adaptive. Genetic signatures of selection arise not

only as a result of functional regions that are direct targets

of selection, but also from genetic hitchhiking of neutral

portions of the genome linked to genes under selection

(Barton 2000). (i) Sequencing of identified loci and com-

parison with known candidate gene databases can help in

determining if identified loci fall in known candidate gene

regions and yield insight into potential homologous func-

tion across species. By identifying allele frequency changes

along environmental gradients, researchers can locate plant

genotypes that may have different physiological tolerances

and are locally adapted to different bio-climatic conditions.

(ii) To better understand how environmental conditions

may limit an organism’s range of tolerance, these geno-

types can then be reciprocally transplanted in common

gardens across environmental gradients. Concurrently

implementing these methods may ultimately allow for

greater power in determining the amount of genetic vari-

ation existing for adaptively important traits within popu-

lations and across a species’ range.

Using the example of G. nivalis, we outline how results

from the spatially-explicit landscape genetic approach can

be directly applied in a conservation context to increase our

understanding of how specific environmental factors limit

species’ ranges. Several of the loci identified as potentially

adaptive in this study exhibited strong, directional clines in

allele frequency with respect to environmental gradients.

For example, locus ATC_CAC_144.5 showed an allele

frequency of 0.7 under low summer precipitation

(mean = 33 rain days) and decreased to a frequency of

0.05 under conditions of high summer precipitation

(mean = 58 rain days) (Fig. 4a). Genetic variation at this

locus could be linked to phenotypic variation in water use

efficiency, drought tolerance, or other such mechanisms

regulating growth and maintenance. As future precipitation

patterns are expected to change, quantifying the adaptive

genetic variation and associated physiological tolerances of

different G. nivalis populations to various moisture regimes

will aid managers in assessing climate change risk. Another

locus, ACT_CAC_103.1, exhibited a strong cline in allele

frequency with respect to latitude, with one allele present at
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a frequency of 0.05 in low latitudes and nearly fixed (fre-

quency = 0.95) at high latitudes (Fig. 4b). Previous studies

have found clinal genetic variation across latitudinal gra-

dients to be associated with key phenological traits such as

day-length-induced growth cessation and bud set (Ing-

varsson et al. 2006). Future common garden studies could

assist researchers in assessing the range of phenotypic

variation for important phenological traits potentially

associated with this locus in G. nivalis. By linking func-

tional mechanisms to genetic variation at selected loci, we

can gain a better understanding of different population’s

ranges of tolerance to environmental variation. The land-

scape genetic approach presented in this paper can there-

fore assist managers in determining key niche requirements

necessary for species growth and survival as well as help

managers identify genetically distinct forms of local

adaptation harboured within different populations.

Inclusion of PCNM spatial predictor variables allowed

us to identify more potentially adaptive loci, but how do we

then determine what these unmeasured selective forces

represent? The first PCNM eigenvector provides a good

example. PCNM1 corresponds to the maximum spatial

scale operating in this study, with each subsequent PCNM

eigenvector representing increasingly smaller scales of

spatial variation. In the upper right quadrant of the RDA

ordination (Online Resource 1), PCNM1 is strongly corre-

lated with three loci as well as with the quadratic polyno-

mial of summer precipitation. PCNM1 is operating at a

similarly broad spatial scale as summer precipitation, and

the strong correlation between the three selected loci and

PCNM1 suggests potential adaptation to a common,

unidentified environmental factor. Sequencing and blasting

these three loci in GenBank’s genetic sequence database

may provide insights into gene function and the corre-

sponding selective force behind PCNM1 (Benson et al.

2005). From hypotheses of potential functional mecha-

nisms, one can then apply PCNM eigenvector associations

with clinal patterns in allele frequency in much the same

way as for known environmental variables. For example,

PCNM2 shows a strong, directional cline that looks very

similar to the allele frequency clines mentioned above for

summer precipitation and latitude. Common garden studies

would then be employed to test physiological tolerances to

hypothesized relationships.

Our exploration of PCNM variables as a means of

controlling for unmeasured spatial variation when identi-

fying potentially adaptive loci is the most comprehensive

to date. With this study, we present a statistical framework

that can be readily applied to available genetic data sets for

any broadly distributed species and used to investigate the

relationship between allele frequencies and site-specific

environmental factors. Application of these methodologies

will be especially useful for species experiencing dramatic

environmental change. Identifying the environmental fac-

tors potentially driving patterns of adaptive genetic varia-

tion and interpreting these patterns across the landscape

offers a significant contribution towards the conservation of

evolutionary potential in non-model organisms and species

of conservation concern.
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